skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Post-fire evolution of ravel transport regimes in the Diablo Range, CA
Abstract. Post-fire changes to the transport regime of dry ravel, which describes the gravity-driven transport of individual particles downslope, are poorly constrained but critical to understand as ravel may contribute to elevated sediment fluxes and associated debris flow activity observed post-fire in the western United States. In this study, we evaluated post-fire variability in dry ravel travel distance exceedance probabilities and disentrainment rates in the Diablo Range of central coastal California following the Santa Clara Unit Lightning Complex fire of August 2020. Between March 2021 and March 2022, we conducted repeat field experiments simulating ravel with in situ particles (3–35 mm diameter) on a range of experimental surface gradients (0.38–0.81) on both grassy south-facing slopes and oak woodland north-facing slopes. We characterized post-fire evolution in particle transport by fitting a probabilistic Lomax distribution model to the empirical travel distance exceedance probabilities for each experimental particle size, surface gradient, and time period. The resulting Lomax shape and scale parameters were used to identify the transport regime for each subset of simulated ravel, ranging from “bounded” (light-tailed or local) to “runaway” (heavy-tailed or nonlocal) motion. Our experimental results indicated that as vegetation recovered over the first 2 years post-fire, the behavior of small particles (median intermediate axis of 6 mm) became less similar across the experimental sites due to different vegetation structures, whereas medium and large particles (median intermediate axes of 13 and 28 mm, respectively) exhibited a general transition from more runaway to more bounded transport, and large particles became less sensitive to surface gradient. All particle sizes exhibited a decrease in the length scale of transport with time. Of all particle subsets, larger particles on steeper slopes were more likely to experience nonlocal transport, consistent with previous observations and theory. These findings are further corroborated by hillslope and channel deposits, which suggest that large particles were preferentially evacuated from the hillslope to the channel during or immediately after the fire. Our results indicate that nonlocal transport of in situ particles likely occurs in the experimental study catchment, and the presence of wildfire increases the likelihood of nonlocal transport, particularly on steeper slopes.  more » « less
Award ID(s):
2123220
PAR ID:
10580851
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
EGU
Date Published:
Journal Name:
Earth Surface Dynamics
Volume:
12
Issue:
6
ISSN:
2196-632X
Page Range / eLocation ID:
1415 to 1446
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Post‐seismic debris flows are an important hazard following large earthquakes, propagating destruction downstream from hillslopes where coseismic landslides occur and extending damage for years after shaking stops. Data sets of post‐seismic debris flows are necessary to predict initiation and runout characteristics but are presently scarce. We used satellite imagery supplemented by field observations to compile an inventory of >1,000 debris flows associated with the 2015 Gorkha Earthquake in Nepal. We identified two distinct debris flow types: (1) Material from a coseismic landslide was remobilized in a steep channel during a later monsoon; and (2) a new post‐seismic hillslope failure occurred in saturated conditions and became fluidized and channelized. Runout distance was constrained by channel confluences and may be related to confluence geometry. Unstable landslide debris was largely flushed from steep channels during the first monsoon following the earthquake, and the rate of new hillslope failures tailed off over a few years. 
    more » « less
  2. Abstract Interactions between vegetation and sediment in post‐fire landscapes play a critical role in sediment connectivity. Prior research has focused on the effects of vegetation removal from hillslopes, but little attention has been paid to the effects of coarse woody debris (CWD) added to the forest floor following fires. We investigate the impacts of CWD on hillslope sediment storage in post‐fire environments. First, we present a new conceptual model, identifying “active” storage scenarios where sediment is trapped upslope of fire‐produced debris such as logs, and additional “passive” storage scenarios including the reduced effectiveness of tree‐throw due to burnt roots and snapped stems. Second, we use tilt table experiments to test controls on sediment storage capacity. Physical modeling suggests storage varies nonlinearly with log orientation and hillslope gradient, and the maximum storage capacity of log barriers in systems with high sediment fluxes likely exceeds estimates that assume simple sediment pile geometries. Last, we calculate hillslope sediment storage capacity in a burned catchment in southwest Montana by combining high‐resolution topographic data and digitization of over 5000 downed logs from aerial imagery. We estimate that from 3500–14 000 m3of sediment was potentially stored upslope of logs. These estimates assume that all downed logs store sediment, a process that is likely temporally dynamic as storage capacity evolves with CWD decay. Our results highlight the role that CWD plays in limiting rapid sediment movement in recently burned systems. Using a range of potential soil production rates (50–100 mm/ky), CWD would buffer the downslope transport of ~35–280 years of soil produced across the landscape, indicating that fire‐produced CWD may serve as an important source of sediment disconnectivity in catchments. These results suggest that disturbance events have previously unaccounted‐for mechanisms of increasing hillslope sediment storage that should be incorporated into models of sediment connectivity. 
    more » « less
  3. The transport and deposition of firebrand particles is an important fire spread mechanism in wildland fires. These particles can be transported by wind over large distances and can ignite secondary fires upon landing. The transport of firebrands by wind is a complex, multiscale process that is largely controlled by interactions between the firebrand particles and the atmospheric wind. To account for the complex temporal evolution of atmospheric turbulence over large scales, the use of large-eddy simulation (LES) techniques is necessary. However, filtering of subgrid-scale (SGS) turbulence in LES hinders the accuracy of particle transport models. In this work, we employ a Lagrangian SGS model in an LES framework to investigate the effects of small-scale turbulence on the transport of mass- and size-changing firebrand particles. The impact of SGS turbulence was analyzed by comparing landing and trajectory statistics for firebrand and regular (fixed size and mass) particles under different Stokes numbers. It was found that the presence of SGS turbulence modifies the particle transport behavior, which is characterized by smaller spanwise dispersions but larger travel distances along the streamwise direction compared with particles under no SGS turbulence. As expected, the enhanced velocity field produced by the SGS model has larger influence on the statistics of firebrand particles compared with regular particles due to the time-evolving reduction in particle mass and size induced by pyrolysis. 
    more » « less
  4. Abstract Post‐fire debris flows represent one of the most erosive consequences associated with increasing wildfire severity and investigations into their downstream impacts have been limited. Recent advances have linked existing hydrogeomorphic models to predict potential impacts of post‐fire erosion at watershed scales on downstream water resources. Here we address two key limitations in current models: (1) accurate predictions of post‐fire debris flow volumes in the absence of triggering storm rainfall intensities and (2) understanding controls on grain sizes produced by post‐fire debris flows. We compiled and analysed a novel dataset of depositional volumes and grain size distributions (GSDs) for 59 post‐fire debris flows across the Intermountain West (IMW) collected via fieldwork and from the literature. We first evaluated the utility of existing models for post‐fire debris flow volume prediction, which were largely developed for Southern California. We then constructed a new post‐fire debris flow volume prediction model for the IMW using a combination of Random Forest modelling and regression analysis. We found topography and burn severity to be important variables, and that the percentage of pre‐fire soil organic matter was an essential predictor variable. Our model was also capable of predicting debris flow volumes without data for the triggering storm, suggesting that rainfall may be more important as a presence/absence predictor, rather than a scaling variable. We also constructed the first models that predict the median, 16th percentile, and 84th percentile grain sizes, as well as boulder size, produced by post‐fire debris flows. These models demonstrate consistent landscape controls on debris flow GSDs that are related to land cover, physical and chemical weathering, and hillslope sediment transport processes. This work advances our ability to predict how post‐fire sediment pulses are transported through watersheds. Our models allow for improved pre‐ and post‐fire risk assessments across diverse ranges of watersheds in the IMW. 
    more » « less
  5. The 1988 Yellowstone fire altered the structure of the local forest ecosystem and left large non-recovery areas. This study assessed the pre-fire drivers and post-fire characteristics of the recovery and non-recovery areas and examined possible reasons driving non-recovery of the areas post-fire disturbance. Non-recovery and recovery areas were sampled with 44,629 points and 77,501 points, from which attribute values related to topography, climate, and subsequent soil conditions were extracted. We calculated the 1988 Yellowstone fire burn thresholds using the differenced Normalized Burn Ratio (dNBR) and official fire maps. We used a burn severity map from the US Forest Service to calculate the burn severity values. Spatial regressions and Chi-Square tests were applied to determine the statistically significant characteristics of a lack of recovery. The non-recovery areas were found to cover 1005.25 km2. Among 11 variables considered as potential factors driving recovery areas and 13 variables driving non-recovery areas, elevation and maximum temperature were found to have high Variance Inflation Factors (4.73 and 4.72). The results showed that non-recovery areas all experienced severe burns and were located at areas with steeper slopes (13.99°), more precipitation (871.73 mm), higher pre-fire vegetation density (NDVI = 0.38), higher bulk density (750.03 kg/m3), lower soil organic matter (165.61 g/kg), and lower total nitrogen (60.97 mg/L). Chi-square analyses revealed statistically different pre-fire forest species (p < 0.01) and soil order (p < 0.01) in the recovery and non-recovery areas. Although Inceptisols dominated in both recovery and non-recovery areas, however, the composition of Mollisols was higher in the non-recovery areas (14%) compared to the recovery areas (11%). This indicated the ecological memory of the non-recovery site reverting to grassland post-disturbance. Unlike conventional studies only focusing on recovery areas, this study analyzed the non-recovery areas and found the key characteristics that make a landscape not resilient to the 1988 Yellowstone fire. The significant effects of elevation, precipitation, and soil pH on recovery may be significant to the forest management and forest resilience in the post-fire period. 
    more » « less