Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The Hunga Tonga‐Hunga Ha'apai (Hunga) volcanic eruption in January 2022 injected a substantial amount of water vapor and a moderate amount of SO2into the stratosphere. Both satellite observations in 2022 and subsequent chemistry‐climate model simulations forced by realistic Hunga perturbations reveal large‐scale cooling in the Southern Hemisphere (SH) tropical to subtropical stratosphere following the Hunga eruption. This study analyzes the drivers of this cooling, including the distinctive role of anomalies in water vapor, ozone, and sulfate aerosol concentration on the simulated climate response to the Hunga volcanic forcing, based on climate simulations with prescribed chemistry/aerosol. Simulated circulation and temperature anomalies based on specified‐chemistry simulations show good agreement with previous coupled‐chemistry simulations and indicate that each forcing of ozone, water vapor, and sulfate aerosol from the Hunga volcanic eruption contributed to the circulation and temperature anomalies in the SH stratosphere. Our results also suggest that (a) the large‐scale stratospheric cooling during the austral winter was mainly induced by changes in dynamical processes, not by radiative processes, and that (b) the radiative feedback from negative ozone anomalies contributed to the prolonged cold temperature anomalies in the lower stratosphere (∼70 hPa level) and hence to long lasting cold conditions of the polar vortex.more » « less
-
Abstract Volcanic eruptions and wildfires can impact stratospheric chemistry. We apply tracer‐tracer correlations to satellite data from Atmospheric Chemistry Experiment—Fourier Transform Spectrometer and the Halogen Occultation Experiment at 68 hPa to consistently compare the chemical impact on HCl after multiple wildfires and volcanic eruptions of different magnitudes. The 2020 Australian New Year (ANY) fire displayed an order of magnitude less stratospheric aerosol extinction than the 1991 Pinatubo eruption, but showed similar large changes in mid‐latitude lower stratosphere HCl. While the mid‐latitude aerosol loadings from the 2015 Calbuco and 2022 Hunga volcanic eruptions were similar to the ANY fire, little impact on HCl occurred. The 2009 Australian Black Saturday fire and 2021 smoke remaining from 2020 yield small HCl changes, at the edge of the detection method. These observed contrasts across events highlight greater reactivity for smoke versus volcanic aerosols at warm temperatures.more » « lessFree, publicly-accessible full text available September 28, 2025
-
Abstract Following the Hunga Tonga–Hunga Ha'apai (HTHH) eruption in January 2022, significant reductions in stratospheric hydrochloric acid (HCl) were observed in the Southern Hemisphere mid‐latitudes during the latter half of 2022, suggesting potential chlorine activation. The objective of this study is to comprehensively understand the loss of HCl in the aftermath of HTHH. Satellite measurements and a global chemistry‐climate model are employed for the analysis. We find strong agreement of 2022 anomalies between the modeled and the measured data. The observed tracer‐tracer relations between nitrous oxide (N2O) and HCl indicate a significant role of chemical processing in the observed HCl reduction, especially during the austral winter of 2022. Further examining the roles of chlorine gas‐phase and heterogeneous chemistry, we find that heterogeneous chemistry emerges as the primary driver for the chemical loss of HCl, and the reaction between hypobromous acid (HOBr) and HCl on sulfate aerosols is the dominant loss process.more » « lessFree, publicly-accessible full text available September 16, 2025
-
The Antarctic ozone “hole” was discovered in 1985, and man-made ozone- depleting substances (ODS) are its primary cause. Following reductions of ODSs under the Montreal Protocol, signs of ozone recovery have been reported, based largely on observations and broad yet compelling model-data comparisons. While such approaches are highly valuable, they don't provide rigorous statistical detection of the temporal and spatial structure of Antarctic ozone recovery in the presence of internal climate variability. Here, we apply pattern-based detection and attribution methods as employed in climate change studies to separate anthropogenically forced ozone responses from internal variability, relying on trend pattern information as a function of month and height. The analysis uses satellite observations together with single-model and multi-model ensemble simulations to identify and quantify the month-height Antarctic ozone recovery “fingerprint”. We demonstrate that the data and simulations show remarkable agreement in the fingerprint pattern of the ozone response to decreasing ODSs since 2005. We also show that ODS forcing has enhanced ozone internal variability during the austral spring, influencing detection of forced responses and their time of emergence. Our results provide robust statistical and physical evidence that actions taken under the Montreal Protocol to reduce ODSs are indeed resulting in the beginning of Antarctic ozone recovery, defined as increases in ozone consistent with expected month-height patterns.more » « lessFree, publicly-accessible full text available March 20, 2026
-
Abstract. Pyrocumulonimbus clouds (pyroCbs) generated by intense wildfires can serve as a direct pathway for the injection of aerosols and gaseous pollutants into the lower stratosphere, resulting in significant chemical, radiative, and dynamical changes. Canada experienced an extremely severe wildfire season in 2023, with a total area burned that substantially exceeded those of previous events known to have impacted the stratosphere (such as the 2020 Australian fires). This season also had record-high pyroCb activity, which raises the question of whether the 2023 Canadian event resulted in significant stratospheric perturbations. Here, we investigate this anomalous wildfire season using retrievals from multiple satellite instruments, ACE-FTS (Atmospheric Chemistry Experiment – Fourier transform spectrometer), OMPS LP (Ozone Mapping and Profiler Suite Limb Profiler), and MLS (Microwave Limb Sounder), to determine the vertical extents of the wildfire smoke along with chemical signatures of biomass burning. These data show that smoke primarily reached the upper troposphere, and only a nominal amount managed to penetrate the tropopause. Only a few ACE-FTS occultations captured elevated abundances of biomass-burning products in the lowermost stratosphere. OMPS LP aerosol measurements also indicate that any smoke that made it past the tropopause did not last long enough or reach high enough to significantly perturb stratospheric composition. While this work focuses on Canadian wildfires given the extensive burned area, pyroCbs at other longitudes (e.g., Siberia) are also captured in the compositional analysis. These results highlight that despite the formation of many pyroCbs in major wildfires, those capable of penetrating the tropopause are extremely rare; this in turn means that even a massive area burned is not necessarily an indicator of stratospheric effects.more » « less