skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A zooarchaeological analysis of bear (Ursus spp.) remains from two archaeological sites in Unalaska, Alaska (4700 BP - 2500 BP)
This dataset contains information about bear specimens (Ursus spp.) identified from two archaeological sites in Unalaska, Alaska: Margaret Bay (UNL-048, 4700 Before Present (BP)) and Amaknak Bridge (UNL-050, 2500 BP). The material is accessioned at the Museum of the Aleutians in Unalaska. Zooarchaeological data included are three dimensional scans (OBJ, MTL, and JPG files for rendering in MeshLab software) and digital photographs. 3D scans were obtained by using a DAVID SLS-3 HD Structured White Light 3D Scanner at the University of Oklahoma Laboratories of Molecular Anthropology and Microbiome Research (LMAMR). Photographs were taken with a Nikon D3400 24.2-megapixel DX format DSLR camera. Zooarchaeological analyses were performed to investigate how bears came to be in Unalaska Bay, a region where bears do not currently live. It has been suggested that this assemblage is evidence of Neoglacial expansion of sea ice in the region and subsequent range expansion of polar bears. Our goals here were to assess whether the bears can be distinguished to species and determine whether these animals were harvested locally and represent a range expansion. The results suggest that bears are very difficult to distinguish using morphological characteristics alone: we argue there is likely a mix of brown and polar bear in this small assemblage, but that morphological analyses alone are inadequate for reconstructing bear distribution in this context. However, the age profiles and butchery patterns do suggest that bears were harvested locally, and we contend that expanding Neoglacial sea ice facilitated their presence around Unalaska Island.  more » « less
Award ID(s):
2139044
PAR ID:
10581057
Author(s) / Creator(s):
Publisher / Repository:
NSF Arctic Data Center
Date Published:
Subject(s) / Keyword(s):
zooarchaeolgy Unalaska Unangax̂ polar bear brown bear Neoglacial sea ice
Format(s):
Medium: X Other: text/xml
Location:
Arctic Data Center
Institution:
University of Oklahoma
Sponsoring Org:
National Science Foundation
More Like this
  1. Polar bear (Ursus maritimus) is the apex predator of the Arctic, largely dependent on sea-ice. The expected disappearance of the ice cover of the Arctic seas by the mid 21st century is predicted to cause a dramatic decrease in the global range and population size of the species. To place this scenario against the backdrop of past distribution changes and their causes, we use a fossil dataset to investigate the polar bear’s past distribution dynamics during the Late Glacial and the Holocene. Fossil results indicate that during the last deglaciation, polar bears were present at the southwestern margin of the Scandinavian Ice Sheet, surviving until the earliest Holocene. There are no Arctic polar bear findings from 8,000-6,000 years ago (8-6 ka), the Holocene’s warmest period. However, fossils that date from 8-9 ka and 5-6 ka suggest that the species likely survived this period in cold refugia located near the East Siberian Sea, northern Greenland and the Canadian Archipelago. Polar bear range expansion is documented by an increase in fossils during the last 4,000 years in tandem with cooling climate and expanding Arctic sea ice. The results document changes in polar bear’s distribution in response to Late Glacial and Holocene Arctic temperature and sea ice trends. 
    more » « less
  2. Declining Arctic sea ice is increasing polar bear land use. Polar bears on land are thought to minimize activity to conserve energy. Here, we measure the daily energy expenditure (DEE), diet, behavior, movement, and body composition changes of 20 different polar bears on land over 19–23 days from August to September (2019–2022) in Manitoba, Canada. Polar bears on land exhibited a 5.2-fold range in DEE and 19-fold range in activity, from hibernation-like DEEs to levels approaching active bears on the sea ice, including three individuals that made energetically demanding swims totaling 54–175 km. Bears consumed berries, vegetation, birds, bones, antlers, seal, and beluga. Beyond compensating for elevated DEE, there was little benefit from terrestrial foraging toward prolonging the predicted time to starvation, as 19 of 20 bears lost mass (0.4–1.7 kg•day−1). Although polar bears on land exhibit remarkable behavioral plasticity, our findings reinforce the risk of starvation, particularly in subadults, with forecasted increases in the onshore period. 
    more » « less
  3. Abstract During the Late Pleistocene, major parts of North America were periodically covered by ice sheets. However, there are still questions about whether ice‐free refugia were present in the Alexander Archipelago along the Southeast (SE) Alaska coast during the last glacial maximum (LGM). Numerous subfossils have been recovered from caves in SE Alaska, including American black (Ursus americanus) and brown (U. arctos) bears, which today are found in the Alexander Archipelago but are genetically distinct from mainland bear populations. Hence, these bear species offer an ideal system to investigate long‐term occupation, potential refugial survival and lineage turnover. Here, we present genetic analyses based on 99 new complete mitochondrial genomes from ancient and modern brown and black bears spanning the last ~45,000 years. Black bears form two SE Alaskan subclades, one preglacial and another postglacial, that diverged >100,000 years ago. All postglacial ancient brown bears are closely related to modern brown bears in the archipelago, while a single preglacial brown bear is found in a distantly related clade. A hiatus in the bear subfossil record around the LGM and the deep split of their pre‐ and postglacial subclades fail to support a hypothesis of continuous occupancy in SE Alaska throughout the LGM for either species. Our results are consistent with an absence of refugia along the SE Alaska coast, but indicate that vegetation quickly expanded after deglaciation, allowing bears to recolonize the area after a short‐lived LGM peak. 
    more » « less
  4. Abstract. Greenland Ice Sheet (GrIS) outlet glaciers are currently losing mass, leading to sea level rise. Reconstructions of past outlet glacier behavior through the Holocene help us better understand how they respond to climate change. Kiattuut Sermiat, a southern Greenland outlet glacier near Narsarsuaq, is known to have experienced an unusually large Late Holoceneadvance that culminated at ∼1600 cal yr BP and exceeded theglacier's Little Ice Age extent. We report sedimentary records from twolakes at slightly different elevations in an upland valley adjacent toKiattuut Sermiat. These reveal when the outlet glacier's surface elevationwas higher than during the Little Ice Age and constrain the associatedoutlet glacier surface elevation. We use bulk sediment geochemistry,magnetic susceptibility, color, texture, and the presence of aquatic plantmacrofossils to distinguish between till, glaciolacustrine sediments, andorganic lake sediments. Our 14C results above basal till recordingregional deglaciation skew slightly old due to a reservoir effect but aregenerally consistent with regional deglaciation occurring ∼ 11 000 cal yr BP. Neoglacial advance of Kiattuut Sermiat is recorded by deposition of glaciolacustrine sediments in the lower-elevation lake, which we infer was subsumed by an ice-dammed lake that formed along the glacier's margin just after ∼ 3900 cal yr BP. This timing is consistent with several other glacial records in Greenland showing neoglacial cooling driving advance between ∼ 4500–3000 cal yr BP. Given that glaciolacustrine sediments were deposited only in the lower-elevation lake, combined with glacial geomorphological evidence in the valley containing these lakes, we estimate the former ice margin's elevation to have been ∼ 670 m a.s.l., compared with ∼ 420 m a.s.l. today. The ice-dammed lake persisted until the glacier surface fell below this elevation at ∼ 1600 cal yr BP. The retreat timing contrasts with overall evidence for cooling and glacier advance in the region at that time, so we infer that Kiattuut Sermiat's retreat may have resulted from reduced snowfall amounts and/or local glaciological complexity. High sensitivity to precipitation changes could also explain the relatively limited Little Ice Age advance of Kiattuut Sermiat compared with the earlier neoglacial advance. 
    more » « less
  5. The polar bear ( Ursus maritimus ) has become a symbol of the threat to biodiversity from climate change. Understanding polar bear evolutionary history may provide insights into apex carnivore responses and prospects during periods of extreme environmental perturbations. In recent years, genomic studies have examined bear speciation and population history, including evidence for ancient admixture between polar bears and brown bears ( Ursus arctos ). Here, we extend our earlier studies of a 130,000- to 115,000-y-old polar bear from the Svalbard Archipelago using a 10× coverage genome sequence and 10 new genomes of polar and brown bears from contemporary zones of overlap in northern Alaska. We demonstrate a dramatic decline in effective population size for this ancient polar bear’s lineage, followed by a modest increase just before its demise. A slightly higher genetic diversity in the ancient polar bear suggests a severe genetic erosion over a prolonged bottleneck in modern polar bears. Statistical fitting of data to alternative admixture graph scenarios favors at least one ancient introgression event from brown bears into the ancestor of polar bears, possibly dating back over 150,000 y. Gene flow was likely bidirectional, but allelic transfer from brown into polar bear is the strongest detected signal, which contrasts with other published work. These findings may have implications for our understanding of climate change impacts: Polar bears, a specialist Arctic lineage, may not only have undergone severe genetic bottlenecks but also been the recipient of generalist, boreal genetic variants from brown bears during critical phases of Northern Hemisphere glacial oscillations. 
    more » « less