skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on October 27, 2025

Title: Accessible Nonverbal Cues to Support Conversations in VR for Blind and Low Vision People
Social VR has increased in popularity due to its affordances for rich, embodied, and nonverbal communication. However, nonverbal communication remains inaccessible for blind and low vision people in social VR. We designed accessible cues with audio and haptics to represent three nonverbal behaviors: eye contact, head shaking, and head nodding. We evaluated these cues in real-time conversation tasks where 16 blind and low vision participants conversed with two other users in VR. We found that the cues were effective in supporting conversations in VR. Participants had statistically significantly higher scores for accuracy and confidence in detecting attention during conversations with the cues than without. We also found that participants had a range of preferences and uses for the cues, such as learning social norms. We present design implications for handling additional cues in the future, such as the challenges of incorporating AI. Through this work, we take a step towards making interpersonal embodied interactions in VR fully accessible for blind and low vision people.  more » « less
Award ID(s):
2236054
PAR ID:
10581109
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
ISBN:
9798400706776
Page Range / eLocation ID:
1 to 13
Subject(s) / Keyword(s):
blind low vision VR accessibility
Format(s):
Medium: X
Location:
St. John's NL Canada
Sponsoring Org:
National Science Foundation
More Like this
  1. As social VR applications grow in popularity, blind and low vi- sion users encounter continued accessibility barriers. Yet social VR, which enables multiple people to engage in the same virtual space, presents a unique opportunity to allow other people to support a user’s access needs. To explore this opportunity, we designed a framework based on physical sighted guidance that enables a guide to support a blind or low vision user with navigation and visual interpretation. A user can virtually hold on to their guide and move with them, while the guide can describe the environment. We studied the use of our framework with 16 blind and low vision participants and found that they had a wide range of preferences. For example, we found that participants wanted to use their guide to support social interactions and establish a human connection with a human-appearing guide. We also highlight opportunities for novel guidance abilities in VR, such as dynamically altering an inaccessible environment. Through this work, we open a novel design space for a versatile approach for making VR fully accessible 
    more » « less
  2. Nonverbal communication, such as body language, facial expressions, and hand gestures, is crucial to human communication as it conveys more information about emotions and attitudes than spoken words. However, individuals who are blind or have low-vision (BLV) may not have access to this method of communication, leading to asymmetry in conversations. Developing systems to recognize nonverbal communication cues (NVCs) for the BLV community would enhance communication and understanding for both parties. This paper focuses on developing a multimodal computer vision system to recognize and detect NVCs. To accomplish our objective, we are collecting a dataset focused on nonverbal communication cues. Here, we propose a baseline model for recognizing NVCs and present initial results on the Aff-Wild2 dataset. Our baseline model achieved an accuracy of 68% and a F1-Score of 64% on the Aff-Wild2 validation set, making it comparable with previous state of the art results. Furthermore, we discuss the various challenges associated with NVC recognition as well as the limitations of our current work. 
    more » « less
  3. In virtual environments, many social cues (e.g. gestures, eye contact, and proximity) are currently conveyed visually or auditorily. Indicating social cues in other modalities, such as haptic cues to complement visual or audio signals, will help to increase VR’s accessibility and take advantage of the platform’s inherent flexibility. However, accessibility implementations in social VR are often siloed by single sensory modalities. To broaden the accessibility of social virtual reality beyond replacing one sensory modality with another, we identified a subset of social cues and built tools to enhance them allowing users to switch between modalities to choose how these cues are represented. Because consumer VR uses primarily visual and auditory stimuli, we started with social cues that were not accessible for blind and low vision (BLV) and d/Deaf and hard of hearing (DHH) people, and expanded how they could be represented to accommodate a number of needs. We describe how these tools were designed around the principle of social cue switching, and a standard distribution method to amplify reach. 
    more » « less
  4. Extended reality (XR) technologies, such as virtual reality (VR) and augmented reality (AR), provide users, their avatars, and embodied agents a shared platform to collaborate in a spatial context. Although traditional face-to-face communication is limited by users’ proximity, meaning that another human’s non-verbal embodied cues become more difficult to perceive the farther one is away from that person, researchers and practitioners have started to look into ways to accentuate or amplify such embodied cues and signals to counteract the effects of distance with XR technologies. In this article, we describe and evaluate the Big Head technique, in which a human’s head in VR/AR is scaled up relative to their distance from the observer as a mechanism for enhancing the visibility of non-verbal facial cues, such as facial expressions or eye gaze. To better understand and explore this technique, we present two complimentary human-subject experiments in this article. In our first experiment, we conducted a VR study with a head-mounted display to understand the impact of increased or decreased head scales on participants’ ability to perceive facial expressions as well as their sense of comfort and feeling of “uncannniness” over distances of up to 10 m. We explored two different scaling methods and compared perceptual thresholds and user preferences. Our second experiment was performed in an outdoor AR environment with an optical see-through head-mounted display. Participants were asked to estimate facial expressions and eye gaze, and identify a virtual human over large distances of 30, 60, and 90 m. In both experiments, our results show significant differences in minimum, maximum, and ideal head scales for different distances and tasks related to perceiving faces, facial expressions, and eye gaze, and we also found that participants were more comfortable with slightly bigger heads at larger distances. We discuss our findings with respect to the technologies used, and we discuss implications and guidelines for practical applications that aim to leverage XR-enhanced facial cues. 
    more » « less
  5. Walking in environments with stairs and curbs is potentially dangerous for people with low vision. We sought to understand what challenges low vision people face and what strategies and tools they use when navigating such surface level changes. Using contextual inquiry, we interviewed and observed 14 low vision participants as they completed navigation tasks in two buildings and through two city blocks. The tasks involved walking in- and outdoors, across four staircases and two city blocks. We found that surface level changes were a source of uncertainty and even fear for all participants. Besides the white cane that many participants did not want to use, participants did not use technology in the study. Participants mostly used their vision, which was exhausting and sometimes deceptive. Our findings highlight the need for systems that support surface level changes and other depth-perception tasks; they should consider low vision people's distinct experiences from blind people, their sensitivity to different lighting conditions, and leverage visual enhancements. 
    more » « less