Abstract The meridional temperature profile of the upper layers of planetary atmospheres is set through a balance between differential radiative heating by a nearby star, or by intrinsic heat fluxes emanating from the deep interior, and the redistribution of that heat across latitudes by turbulent flows. These flows spontaneously arise through baroclinic instability of the meridional temperature gradients maintained by the forcing. When planetary curvature is neglected, this turbulence takes the form of coherent vortices that mix the meridional temperature profiles. However, the curvature of the planet favors the emergence of Rossby waves and zonal jets that restrict the meridional wandering of the fluid columns, thereby reducing the mixing efficiency across latitudes. A similar situation arises in the ocean, where the baroclinic instability of zonal currents leads to enhanced meridional heat transport by a turbulent flow consisting of vortices and zonal jets. A recent scaling theory for the turbulent heat transport by vortices is extended to include the impact of planetary curvature, in the framework of the two‐layer quasi‐geostrophic beta‐plane model. This leads to a quantitative parameterization providing the meridional temperature profile in terms of the externally imposed heat flux in an idealized model of planetary atmospheres and oceans. In addition, it provides a quantitative prediction for the emergent criticality, that is, the degree of instability in a canonical model of planetary atmosphere or ocean.
more »
« less
Eddy-driven Zonal Jet Flows in the Laboratory
Zonal jets are a ubiquitous feature of the circulation of planetary atmospheres, oceans and interiors. Many of the dynamical mechanisms that lead to the formation and evolution of such jets can be reproduced and studied in laboratory experiments, which have proved to be important sources of insight for understanding the nature of planetary jets. Here we introduce some of the key concepts underlying the production and maintenance of patterns of zonal jets in rotating and/or stratified flows. We then review a broad range of laboratory experiments that have helped to test and verify many of the dynamical mechanisms proposed to interpret geophysical jets involving the interaction of eddies and zonal flows. Laboratory experiments continue to have an important role to play in elucidating a quantitative understanding of zonal jets and their interactions with other aspects of planetary circulation systems.
more »
« less
- Award ID(s):
- 2143939
- PAR ID:
- 10581133
- Publisher / Repository:
- Institut de France
- Date Published:
- Journal Name:
- Comptes Rendus. Physique
- Volume:
- 25
- Issue:
- S3
- ISSN:
- 1878-1535
- Page Range / eLocation ID:
- 1 to 51
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Theory and modeling are combined to reveal the physical and dynamical processes that control Saharan dust transport by amplifying African easterly waves (AEWs). Two cases are examined: active transport, in which the dust is radiatively coupled to the circulation; passive transport, in which the dust is radiatively decoupled from the circulation. The theory is built around a dust conservation equation for dust-coupled AEWs in zonal-mean African easterly jets. The theory predicts that, for both the passive and active cases, the dust transports will be largest where the zonal-mean dust gradients are maximized on an AEW critical surface. Whether the dust transports are largest for the radiatively passive or radiatively active case depends on the growth rate of the AEWs, which is modulated by the dust heating. The theoretical predictions are confirmed via experiments carried out with the Weather Research and Forecasting model, which is coupled to a dust conservation equation. The experiments show that the meridional dust transports dominate in the passive case, while the vertical dust transports dominate in the active case.more » « less
-
Abstract Understanding fluid flows in planetary cores and subsurface oceans, as well as their signatures in available observational data (gravity, magnetism, rotation, etc.), is a tremendous interdisciplinary challenge. In particular, it requires understanding the fundamental fluid dynamics involving turbulence and rotation at typical scales well beyond our day-to-day experience. To do so, laboratory experiments are fully complementary to numerical simulations, especially in systematically exploring extreme flow regimes for long duration. In this review article, we present some illustrative examples where experimental approaches, complemented by theoretical and numerical studies, have been key for a better understanding of planetary interior flows driven by some type of mechanical forcing. We successively address the dynamics of flows driven by precession, by libration, by differential rotation, and by boundary topography.more » « less
-
Verzicco, R. (Ed.)We present the first detailed thermal and velocity field characterization of convection in a rotating cylindrical tank of liquid gallium, which has thermophysical properties similar to those of planetary core fluids. Our laboratory experiments, and a closely associated direct numerical simulation, are all carried out in the regime prior to the onset of steady convective modes. This allows us to study the oscillatory convective modes, sidewall modes and broadband turbulent flow that develop in liquid metals before the advent of steady columnar modes. Our thermo-velocimetric measurements show that strongly inertial, thermal wind flows develop, with velocities reaching those of non-rotating cases. Oscillatory bulk convection and wall modes coexist across a wide range of our experiments, along with strong zonal flows that peak in the Stewartson layer, but that extend deep into the fluid bulk in the higher supercriticality cases. The flows contain significant time-mean helicity that is anti-symmetric across the midplane, demonstrating that oscillatory liquid metal convection contains the kinematic components to sustain system-scale dynamo generation.more » « less
-
Abstract Polar vortices are common planetary-scale flows that encircle the pole in the middle or high latitudes and are observed in most of the solar system’s planetary atmospheres. The polar vortices on Earth, Mars, and Titan are dynamically related to the mean meridional circulation and exhibit a significant seasonal cycle. However, the polar vortex’s characteristics vary between the three planets. To understand the mechanisms that influence the polar vortex’s dynamics and dependence on planetary parameters, we use an idealized general circulation model with a seasonal cycle in which we vary the obliquity, rotation rate, and orbital period. We find that there are distinct regimes for the polar vortex seasonal cycle across the parameter space. Some regimes have similarities to the observed polar vortices, including a weakening of the polar vortex during midwinter at slow rotation rates, similar to Titan’s polar vortex. Other regimes found within the parameter space have no counterpart in the solar system. In addition, we show that for a significant fraction of the parameter space, the vortex’s potential vorticity latitudinal structure is annular, similar to the observed structure of the polar vortices on Mars and Titan. We also find a suppression of storm activity during midwinter that resembles the suppression observed on Mars and Earth, which occurs in simulations where the jet velocity is particularly strong. This wide variety of polar vortex dynamical regimes that shares similarities with observed polar vortices, suggests that among exoplanets there can be a wide variability of polar vortices.more » « less
An official website of the United States government

