skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Passive versus Active Transport of Saharan Dust Aerosols by African Easterly Waves
Theory and modeling are combined to reveal the physical and dynamical processes that control Saharan dust transport by amplifying African easterly waves (AEWs). Two cases are examined: active transport, in which the dust is radiatively coupled to the circulation; passive transport, in which the dust is radiatively decoupled from the circulation. The theory is built around a dust conservation equation for dust-coupled AEWs in zonal-mean African easterly jets. The theory predicts that, for both the passive and active cases, the dust transports will be largest where the zonal-mean dust gradients are maximized on an AEW critical surface. Whether the dust transports are largest for the radiatively passive or radiatively active case depends on the growth rate of the AEWs, which is modulated by the dust heating. The theoretical predictions are confirmed via experiments carried out with the Weather Research and Forecasting model, which is coupled to a dust conservation equation. The experiments show that the meridional dust transports dominate in the passive case, while the vertical dust transports dominate in the active case.  more » « less
Award ID(s):
2108233
PAR ID:
10336645
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Atmosphere
Volume:
12
Issue:
11
ISSN:
2073-4433
Page Range / eLocation ID:
1509
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The scale-dependent transport of Saharan dust aerosols by African easterly waves (AEWs) is examined analytically and numerically. The analytical analysis shows that the meridional and vertical wave transports of dust are modulated by the Doppler-shifted frequency, ωd, and the wave growth rate, ωi, both of which are functions of the zonal wave scale. The analytical analysis predicts that the AEW dust transports, which are driven by the Reynolds stresses acting on the mean dust gradients, are largest for the twin limits: ωd→0, which corresponds to flow near a critical surface, a local effect; and ωi→0, which corresponds to the slowest growing waves, a global effect. The numerical analysis is carried out with the Weather Research and Forecasting (WRF) model, which is radiatively coupled to the dust field. The model simulations are based on an AEW spectrum consistent with observations. The simulations agree with the theoretical predictions: the slowest growing waves have the strongest transports, which are as much as ~40% larger than the transports of the fastest growing wave. Although the transports are highly scale-dependent, largely due to the scale dependence of ωi, the location of the critical surface and thus the location of the maximum dust transports are not. 
    more » « less
  2. Abstract. ​​​​​​​Each summer, the Saharan Air Layer (SAL) transports massive amounts of mineral dust across the Atlantic Ocean, affecting weather, climate, and public health over large areas. Despite the considerable impacts of African dust, the causes and impacts of extreme trans-Atlantic African dust events are not fully understood. The “Godzilla” trans-Atlantic dust event of 2020 has been extensively studied, but little is known about other similar events. Here, we examine the June 2015 event, the second strongest trans-Atlantic African dust event that occurred during the summers from 2003–2022. This event was characterized by moderately high dust emissions over western North Africa and an extremely high aerosol optical depth (AOD) over the tropical North Atlantic. The high dust loading over the Atlantic is associated with atmospheric circulation extremes similar to the Godzilla event. Both the African easterly jet (AEJ) and Caribbean low-level jet (CLLJ) have greatly intensified, along with a westward extension of the North Atlantic subtropical high (NASH), all of which favor the westward transport of African dust. The enhanced dust emissions are related to anomalously strong surface winds in dust source regions and reduced vegetation density and soil moisture across the northern Sahel. The dust plume reduced net surface shortwave radiation over the eastern tropical North Atlantic by about 25 W m−2 but increased net longwave flux by about 3 W m−2. In contrast to the Godzilla event, the 2015 event had minor air quality impacts on the US, partially due to the extremely intensified CLLJ that dispersed the dust plume towards the Pacific. 
    more » « less
  3. The West African summer monsoon features multiple, complex interactions between African easterly waves (AEWs), moist convection, variable land surface properties, dust aerosols, and the diurnal cycle. One aspect of these interactions, the coupling between convection and AEWs, is explored using observations obtained during the 2006 African Monsoon Multidisciplinary Analyses (AMMA) field campaign. During AMMA, a research weather radar operated at Niamey, Niger, where it surveilled 28 squall-line systems characterized by leading convective lines and trailing stratiform regions. Nieto Ferreira et al. found that the squall lines were linked with the passage of AEWs and classified them into two tracks, northerly and southerly, based on the position of the African easterly jet (AEJ). Using AMMA sounding data, we create a composite of northerly squall lines that tracked on the cyclonic shear side of the AEJ. Latent heating within the trailing stratiform regions produced a midtropospheric positive potential vorticity (PV) anomaly centered at the melting level, as commonly observed in such systems. However, a unique aspect of these PV anomalies is that they combined with a 400–500-hPa positive PV anomaly extending southward from the Sahara. The latter feature is a consequence of the deep convective boundary layer over the hot Saharan Desert. Results provide evidence of a coupling and merging of two PV sources—one associated with the Saharan heat low and another with latent heating—that ends up creating a prominent midtropospheric positive PV maximum to the rear of West African squall lines. 
    more » « less
  4. Abstract While considerable attention has been given to how convectively coupled Kelvin waves (CCKWs) influence the genesis of tropical cyclones (TCs) in the Atlantic Ocean, less attention has been given to their direct influence on African easterly waves (AEWs). This study builds a climatology of AEW and CCKW passages from 1981 to 2019 using an AEW-following framework. Vertical and horizontal composites of these passages are developed and divided into categories based on AEW position and CCKW strength. Many of the relationships that have previously been found for TC genesis also hold true for non-developing AEWs. This includes an increase in convective coverage surrounding the AEW center in phase with the convectively enhanced (“active”) CCKW crest, as well as a buildup of relative vorticity from the lower to upper troposphere following this active crest. Additionally, a new finding is that CCKWs induce specific humidity anomalies around AEWs that are qualitatively similar to those of relative vorticity. These modifications to specific humidity are more pronounced when AEWs are at lower latitudes and interacting with stronger CCKWs. While the influence of CCKWs on AEWs is mostly transient and short lived, CCKWs do modify the AEW propagation speed and westward-filtered relative vorticity, indicating that they may have some longer-term influences on the AEW life cycle. Overall, this analysis provides a more comprehensive view of the AEW–CCKW relationship than has previously been established, and supports assertions by previous studies that CCKW-associated convection, specific humidity, and vorticity may modify the favorability of AEWs to TC genesis over the Atlantic. 
    more » « less
  5. Abstract It is well known that African easterly waves (AEWs) can develop into tropical cyclones. However, the processes leading to development are not well understood. To this end, we examine a 38-yr climatology of AEW tracks sorted into developing AEWs (DAEWs) and strong nondeveloping AEWs (SNDAEWs). Wave-centered composites for tracks in the eastern Atlantic (40°–10°W, 5°S–30°N) and West African monsoon regions (10°W–20°E, 5°S–30°N) reveal that DAEWs occur over a more humid background state in both regions. The more humid environment causes DAEWs to exhibit heavier precipitation and wave amplification via vortex stretching. Examination of the column moist static energy (MSE) budget reveals that DAEWs exhibit stronger radiative heating and more moistening via horizontal MSE advection than SNDAEWs. The stronger horizontal MSE advection in DAEWs is due to a northeast shift in the maximum MSE relative to the wave axis, causing the northerlies in the wave to advect a higher MSE into the maximum precipitation. In contrast, MSE is maximum near the center of NDAEWs, making the moistening of the rainfall by horizontal MSE advection weaker. DAEWs exhibit stronger radiative heating per unit of rainfall relative to NDAEWs, suggesting that cloud-radiative feedbacks are stronger in these systems. The sum of horizontal MSE advection and radiative heating explains the buildup in MSE seen over the rainy region of the DAEWs that is not seen in SNDAEWs. These results underscore the importance of moisture, cloud–radiation interactions, and horizontal MSE advection in tropical cyclone (TC) development over these regions. Significance StatementAfrican easterly waves are the most common precursors of tropical cyclones in the Atlantic basin. Despite significant progress in understanding the processes that distinguish waves that develop into tropical cyclones versus those that do not, important gaps in knowledge remain. In this study, we employed a wave-centered compositing scheme and the moist static energy budget to understand the differences between easterly waves that develop and the strongest nondeveloping waves. Our results show that waves that develop into tropical cyclones occur in a more humid environment where less dry air is transported toward the wave’s rainy region. The more humid environment is also associated with stronger rainfall as well as stronger radiative heating in developing waves, the latter which favors the buildup of moisture in developing waves. Our results underscore the importance of water vapor and its horizontal distribution in determining the development of African easterly waves. 
    more » « less