skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High voltage determination and stabilization for collinear laser spectroscopy applications
Fast beam collinear laser spectroscopy is the established method to investigate nuclear ground state properties such as the spin, the electromagnetic moments, and the charge radius of exotic nuclei. These are extracted with high precision from atomic observables, i.e., the hyperfine splitting and the isotope shift, which become possible due to a large reduction of the Doppler broadening by compressing the velocity width of the ion beam through electrostatic acceleration. With the advancement of experimental methods and applied devices, e.g., to measure and stabilize the laser frequency, the acceleration potential became the dominant systematic uncertainty contribution. To overcome this, we present a custom-built high-voltage divider, which was developed and tested at the German metrology institute, and a feedback loop that enabled collinear laser spectroscopy to be performed at a 100-kHz level. Furthermore, we describe the impact of field penetration into the laser–ion interaction region. This affects the determined isotope shifts and hyperfine splittings if Doppler tuning is applied, i.e., the ion beam energy is altered instead of scanning the laser frequency. Using different laser frequencies that were referenced to a frequency comb, the field penetration was extracted laser spectroscopically. This allowed us to define an effective scanning potential to still apply the faster and easier Doppler tuning without introducing systematic deviations.  more » « less
Award ID(s):
2111185
PAR ID:
10581162
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Review of Scientific Instruments
Volume:
95
Issue:
8
ISSN:
0034-6748
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report on accurate measurements of the hyperfine constants of the narrow cooling transition of neutral Holmium at 412.1 nm. This transition has a linewidth of 2.3 MHz and a Doppler temperature of 55 microK which renders it suitable for second stage laser cooling. The proximity of the wavelength to the strong cooling transition at 410.5 nm[1] renders this transition convenient for first and second stage cooling using a combined optical setup. The hyperfine constants were measured using Doppler free saturated absorption spectroscopy in a hollow cathode discharge. Relative measurements of the locations of the hyperfine levels were made using an EOM modulator with an RF offset relative to a stable ULE cavity reference. The A and B hyperfine constants were determined to be A= 715.85±0.15 MHz and B= 1013±16.0 MHz which significantly improves on the precision of earlier measurements. 
    more » « less
  2. We report on progress in the understanding of the effects of kilotesla-level applied magnetic fields on relativistic laser–plasma interactions. Ongoing advances in magnetic-field–generation techniques enable new and highly desirable phenomena, including magnetic-field–amplification platforms with reversible sign, focusing ion acceleration, and bulk-relativistic plasma heating. Building on recent advancements in laser–plasma interactions with applied magnetic fields, we introduce simple models for evaluating the effects of applied magnetic fields in magnetic-field amplification, sheath-based ion acceleration, and direct laser acceleration. These models indicate the feasibility of observing beneficial magnetic-field effects under experimentally relevant conditions and offer a starting point for future experimental design. 
    more » « less
  3. Abstract We introduced and applied a set of parameters to quantify surface modifications and pattern resolutions made by a Ga ion beam in a focused ion beam instrument using two material systems, Si and SrTiO3. A combination of top-view scanning electron microscopy and cross-sectional scanning transmission electron microscopy imaging and energy-dispersive X-ray spectroscopy was used to study the structure, composition and measure dimensions of the patterned lines. The total ion dose was identified as the key parameter governing the line characteristics, which can be controlled by the degree of overlap among adjacent spots, beam dwell time at each spot, and number of beam passes for given beam size and current. At higher ion doses (>1015 ions/cm2), the Ga ions remove part of the material in the exposed area creating “channels” surrounded with amorphized regions, whereas at lower ion doses only amorphization occurs, creating “ridges” on the wafer surface. To pattern lines with similar sizes, an order of magnitude different ion doses was required for Si and SrTiO3 indicating strong material dependence. Quantification revealed that lines as fine as 10 nm can be reproducibly patterned and characterized on the surfaces of materials. 
    more » « less
  4. Imaging beyond the diffraction limit barrier has attracted wide attention due to the ability to resolve previously hidden image features. Of the various super-resolution microscopy techniques available, a particularly simple method called saturated excitation microscopy (SAX) requires only simple modification of a laser scanning microscope: The illumination beam power is sinusoidally modulated and driven into saturation. SAX images are extracted from the harmonics of the modulation frequency and exhibit improved spatial resolution. Unfortunately, this elegant strategy is hindered by the incursion of shot noise that prevents high-resolution imaging in many realistic scenarios. Here, we demonstrate a technique for super-resolution imaging that we call computational saturated absorption (CSA) in which a joint deconvolution is applied to a set of images with diversity in spatial frequency support among the point spread functions (PSFs) used in the image formation with saturated laser scanning fluorescence microscopy. CSA microscopy allows access to the high spatial frequency diversity in a set of saturated effective PSFs, while avoiding image degradation from shot noise. 
    more » « less
  5. Frequency domain nonlinear spectroscopies are a useful probe of linear and non-linear transitions in a variety of biological, chemical, and materials systems. They require scanning of optical parametric amplifiers (OPAs). Each OPA contains multiple motors that move to prerecorded positions to optimize output at each desired color. OPA optimization and color accuracy are crucial for frequency domain experiments, where OPA color is scanned. Such performance is highly sensitive to environmental fluctuations, so motor positions must be regularly optimized and tuned. Despite the widespread availability of motorized OPAs, this frequent maintenance can make frequency domain spectroscopy a cumbersome and time-consuming process. We have found that fully automated approaches to tuning are invaluable when scanning OPAs. Here, we report four algorithms that accurately and robustly tune a variety of ultrafast laser systems—picosecond and femtosecond, homebuilt and commercial OPAs. Using case studies from previously published work, we illustrate how these four algorithms can be combined to tune all motors of an ultrafast laser system. These algorithms are available through open-source software and can be applied to existing instruments, significantly lowering the threshold for executing frequency domain spectroscopy. 
    more » « less