Characterization of the thermal gradients within supersonic and hypersonic flows is essential for understanding transition, turbulence, and aerodynamic heating. Developments in novel, impactful non-intrusive techniques are key for enabling flow characterizations of sufficient detail that provide experimental validation datasets for computational simulations. In this work, Resonantly Ionized Photoemission Thermometry (RIPT) signals are directly imaged using an ICCD camera to realize the techniques 1D measurement capability for the first time. The direct imaging scheme presented for oxygen-based RIPT (O2RIPT) uses the previously established calibration data to direct excite various resonant rotational peaks within the S-branch of theC3Π, (v = 2) ← X3Σ(v′ = 0) absorption band of O2. The efficient ionization of O2liberates electrons that induce electron avalanche ionization of local N2molecules generating N2+, which primarily deexcites via photoemissions of the first negative band of . When sufficient lasing energy is used, the ionization region and subsequent photoemission signal is achieved along a 1D line thus, if directly imaged can allow for gas temperature assignments along said line; demonstrated here of up to five centimeters in length. The temperature gradients present within the ensuing shock train of a supersonic under expanded free jet serves as a basis of characterization for this new RIPT imaging scheme. The O2RIPT results are extensively compared and validated against well-known and established techniques (i.e., CARS and CFD). The direct imaging capability fully realizes the technique’s fundamental potential and is expected to be the standard of implementation going forward. The direct imaging capability can play instrumental roles in future scientific studies that rely upon acute characterization of thermal gradients within a medium that cannot be easily resolved by a point. Furthermore, the removal of the spectrometer greatly reduces the cost, complexity, and optical alignment associated with prior RIPT measurements.
more »
« less
This content will become publicly available on April 3, 2026
Nonseeded linewise temperature measurements by resonantly ionized photoemission thermometry in a Mach 4 Ludwieg tube
A one-dimensional (1D) thermometry using oxygen-tagging resonantly ionized photoelectron thermometry (O2RIPT) was employed to investigate thermal gradients within a Mach 4 Ludwieg tube. The Ludwieg tube is pulsed with a test duration of approximately 100 ms, providing a cold supersonic flow at Mach 4 ideal for studying aerothermal effects. This study focused on measuring freestream temperatures, capturing shock-induced heating behind a detached bow shock from a blunt cylinder, and resolving sharp temperature variations across a bow shock generated by a cylinder. The O2RIPT technique produced strong emission signals extending approximately 4 cm long, demonstrating its capability for precise temperature measurements in high-speed wind tunnel environments. The results confirm that O2RIPT is well-suited for applications in large-scale aerodynamic testing facilities, particularly in regions with strong compression effects, enabling the resolution of sharp thermal gradients. This method presents a promising solution for thermometry in dynamic flow conditions relevant to various experimental ground-test facilities.
more »
« less
- Award ID(s):
- 2026242
- PAR ID:
- 10581179
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Applied Optics
- Volume:
- 64
- Issue:
- 16
- ISSN:
- 1559-128X; APOPAI
- Format(s):
- Medium: X Size: Article No. D69
- Size(s):
- Article No. D69
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper presents an extensive parameter study of a non-intrusive and non-seeded laser diagnostic method for measuring one dimensional (1D) rotational temperature of molecular nitrogen (N2) at 165 - 450 K. Compared to previous efforts using molecular oxygen, here resonantly ionized and photoelectron induced fluorescence of molecular nitrogen for thermometry (N2RIPT) was demonstrated. The RIPT signal is generated by directly probing various rotational levels within the rovibrational absorption band of N2, corresponding to the 3-photon transition of N2(X1Σg+,v=0→b1Πu,v′=6) near 285 nm, without involving collisional effects of molecular oxygen and nitrogen. The photoionized N2produces strong first negative band of N2+(B2Σu+−X2Σg+) near 390 nm, 420 nm, and 425 nm. Boltzmann analyses of various discrete fluorescence emission lines yield rotational temperatures of molecular nitrogen. By empirically choosing multiple rotational levels within the absorption band, non-scanning thermometry can be accurately achieved for molecular nitrogen. It is demonstrated that the N2RIPT technique can measure 1D temperature profile up to ∼5 cm in length within a pure N2environment. Multiple wavelengths are thoroughly analyzed and listed that are accurate for RIPT for various temperature ranges.more » « less
-
Abstract Foreshock transients such as foreshock bubbles (FBs), hot flow anomalies (HFAs), and spontaneous hot flow anomalies (SHFAs) display heated, tenuous cores and large flow deflections bounded by compressional boundaries. THEMIS and Cluster observations show that some cores contain local density enhancements which can be studied to better understand the evolution processes of foreshock transients. However, closer examinations of these substructures were not feasible until the availability of the higher resolution data from the Magnetospheric Multiscale mission (MMS). We identify 164 FB‐like, HFA‐like, and SHFA events from two MMS dayside phases for a statistical study to investigate their solar wind conditions, properties, and substructure properties. Occurrence rates of the three event types are higher for lower magnetic field strengths, higher solar wind speeds and Mach numbers, and quasi‐parallel bow shocks. Events usually span up to 3REalong the bow shock surface and extend up to 6REupstream from the bow shock. Though events with and without substructures exhibit similar solar wind conditions, events with substructures are more likely to have longer core durations and larger sizes. Substructure densities display a positive correlation with bulk flows and a negative correlation with temperatures. Substructure sizes vary between 4 and 24 ion inertial lengths, indicating multiple formation mechanisms. Substructures could be the boundary between two foreshock transient events that have merged into a single event, fast‐mode variations, generated by slow or mirror mode instabilities, or produced from instabilities due to parameter gradients at the compressional boundaries or shocks.more » « less
-
Abstract Hot flow anomalies (HFAs) and foreshock bubbles (FBs) are frequently observed in Earth's foreshock, which can significantly disturb the bow shock and therefore the magnetosphere‐ionosphere system and can accelerate particles. Previous statistical studies have identified the solar wind conditions (high solar wind speed and high Mach number, etc.) that favor their generation. However, backstreaming foreshock ions are expected to most directly control how HFAs and FBs form, whereas the solar wind may partake in the formation process indirectly by determining foreshock ion properties. Using Magnetospheric Multiscale mission and Time History of Events and Macroscale Interactions during Substorms mission, we perform a statistical study of foreshock ion properties around 275 HFAs and FBs. We show that foreshock ions with a high foreshock‐to‐solar wind density ratio (>∼3%), high kinetic energy (>∼600 eV), large ratio of kinetic energy to thermal energy (>∼0.1), and large ratio of perpendicular temperature to parallel temperature (>∼1.4) favor HFA and FB formation. We also examine how these properties are related to solar wind conditions: high solar wind speed and oblique bow shock (angle between the interplanetary magnetic field and the bow shock normal) favor high kinetic energy of foreshock ions; foreshock ions have large ratio of kinetic energy to thermal energy at large(>30°); small(<30°), high Mach number, and closeness to the bow shock favor a high foreshock‐to‐solar wind density ratio. Our results provide further understanding of HFA and FB formation.more » « less
-
Observation of high-speed reactive flows using laser-absorption-based imaging techniques is of interest for its potential to quantitatively reveal both gas-dynamic and thermochemical processes. In the current study, an ultraviolet (UV) laser-absorption imaging method based on nitric oxide (NO) is demonstrated to capture transient flows in a shock tube. A tunable laser was used to generate a continuous-wave UV beam at 226.1019 nm to coincide with a strong NO absorption feature. The UV beam was expanded to a 20-mm diameter and routed through the shock tube to image the flow adjacent to the end wall. Time-resolved imaging was realized using a Lambert HiCATT high-speed UV intensifier coupled to a Phantom v2012 high-speed camera. Static absorbance measurements of 1.97% NO/Ar mixtures were first performed to validate the proposed imaging concept, showing good agreement with values predicted by a spectroscopic model. UV laser-absorption images of incident and reflected shock waves captured at 90 kHz temporal resolution are then reported. Translational temperature profiles across the incident and reflected shocks calculated from absorbance images show reasonable agreement with calculated values. After the passage of the reflected shock wave, the flow near the end wall was monitored to probe the development of the end-wall thermal boundary layer. Thermometry measurements across the thermal boundary layer show good agreement with analytical solutions. This study demonstrates the potential of UV laser-absorption imaging in high-speed flow fields, to be applied to more complex applications in the future.more » « less
An official website of the United States government
