skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multi‐year evaluation of rearing techniques for three sexually propagated Caribbean corals in a restoration setting
In response to declining coral populations worldwide, conservation groups are increasingly applying restoration strategies to bolster abundance and diversity, including sexual propagation of corals. Collection and fertilization of coral gametes as well as larval rearing and settlement have been successful. However, post‐settlement stages remain a bottleneck (80–100% mortality), which makes this technique costly to implement at scale. To address this challenge, we compared the survival and colony size of three sexually propagated Caribbean coral species,Diploria labyrinthiformis,Pseudodiploria strigosa, andOrbicella faveolata, reared at three levels of investment: direct outplant to reef, in situ field nursery rearing, and ex situ aquaculture facility rearing. As part of coral sexual propagation work in St. Croix, United States Virgin Islands, recruits were reared for 1 year before being outplanted to reef plots and were monitored annually for three subsequent years. The cost‐effectiveness of each rearing strategy was calculated at each monitoring time point via coral seeding unit yield and cost per seeding unit. Although survival was low at 4 years (0–1.8%), corals reared in the in situ nursery displayed significantly higher survival and therefore lower cost per seeding unit than the other two investment strategies. These results highlight the benefits of an in situ nursery stage to increase long‐term juvenile survival and cost‐effectiveness. The return on investment of corals reared in the in situ nursery suggests that outplanting sexually propagated corals may be a viable restoration strategy; however, the low proportion of corals surviving at 4 years highlights current limitations when outplanting on degraded reefs.  more » « less
Award ID(s):
2133474 2340930
PAR ID:
10581183
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Restoration Ecology
Volume:
33
Issue:
4
ISSN:
1061-2971
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Reversing coral reef decline requires reducing environmental threats while actively restoring reef ecological structure and function. A promising restoration approach uses coral breeding to boost natural recruitment and repopulate reefs with genetically diverse coral communities. Recent advances in predicting spawning, capturing spawn, culturing larvae, and rearing settlers have enabled the successful propagation, settlement, and outplanting of coral offspring in all of the world's major reef regions. Nevertheless, breeding efforts frequently yield low survival, reflecting the type III survivorship curve of corals and poor condition of most reefs targeted for restoration. Furthermore, coral breeding programs are still limited in spatial scale and species diversity. Here, we highlight four priority areas for research and cooperative innovation to increase the effectiveness and scale of coral breeding in restoration: (1) expanding the number of restoration sites and species, (2) improving broodstock selection to maximize the genetic diversity and adaptive capacity of restored populations, (3) enhancing culture conditions to improve offspring health before and after outplanting, and (4) scaling up infrastructure and technologies for large‐scale coral breeding and restoration. Prioritizing efforts in these four areas will enable practitioners to address reef decline at relevant ecological scales, re‐establish self‐sustaining coral populations, and ensure the long‐term success of restoration interventions. Overall, we aim to guide the coral restoration community toward actions and opportunities that can yield rapid technical advances in larval rearing and coral breeding, foster interdisciplinary collaborations, and ultimately achieve the ecological restoration of coral reefs. 
    more » « less
  2. Abstract The elkhorn coral,Acropora palmata, was historically a major reef-building species in the Caribbean, but has suffered devastating declines in recent decades. Despite significant restoration efforts in Florida, the marine heatwave of 2023 caused severe bleaching and mortality to both wild and restored colonies. To understand the disastrous impacts, we evaluated the variation in heat tolerance among Florida’sA. palmatapopulation prior to the event. In 2022, we used rapid acute heat stress assays to assess the thermal tolerance of 172 adult colonies (125 unique genets) from four nurseries. We found variation in thermal tolerance (4.17°C range in ED50) that was attributed to nursery location (17.2% of variation), genet (25.9%), and symbiont abundance (15.6%). Algal symbiont type, however, was the strongest predictor of thermal performance, with the few (n = 10) colonies hostingDurusdiniumbeing, on average, 1.9°C more thermally tolerant than corals hostingSymbiodinium. This difference would have decreased the effective heat stress accumulation during the 2023 event by ~92%. Therefore, despite considerable variation in thermal tolerance among Florida’s elkhorn corals, hostingDurusdiniumappears to be the most effective mechanism for surviving such extreme heat stress. These findings suggest that restoration strategies that focus on rearing sexually derivedA. palmatarecruits withDurusdinium, followed by outplanting to suitable environments, may improve survival during future heatwaves. Combined with efforts to introduce additional elkhorn diversity from populations outside Florida, these approaches may be the most effective interventions to promote the continued survival of Florida’s elkhorn corals in the face of rapid climate change. 
    more » « less
  3. Tropical corals are undergoing population declines due to disturbances. The implications of these trends are modulated by the ability of corals to support population recovery through recruitment. Current research underscores the importance of physical features of benthic surfaces in promoting coral recruitment, which creates opportunities to enhance recruitment by engineering surfaces to replicate these features with the goal of enhancing coral settlement. This study examined the interaction between the settlement of coral larvae and three-dimensional (3D) surfaces and employed 3D printing to enhance recruitment. We tested the effects of the features of microhabitats on the settlement preference, gregariousness, and survival of the brooding coral Pocillopora acuta. Grooved microhabitats that are common in the shallow (<7 m depth) backreef of Moorea, French Polynesia, were printed onto tiles made of polylactic acid, and were favored for settlement by freshly released larvae fromP.acuta. The percent survivorship over 20 d of coral recruits that settled in grooved microhabitats was 16.4% vs none on open flat surfaces. These results underscore the importance of naturally forming benthic features in promoting coral recruitment, and they highlight the potential for duplication of these features through 3D printing to enhance coral recruitment and accelerate reef restoration following damage. 
    more » « less
  4. Abstract The success and cost‐effectiveness of kelp forest restoration hinges on understanding the colonization ecology of kelps, particularly with respect to dispersal potential, recruitment success, and subsequent establishment. To gain needed insight into these processes we examined spatial patterns and temporal trajectories of the colonization of a large artificial reef by the giant kelpMacrocystis pyrifera. The 151 ha artificial reef complex was constructed in three phases over 21 years, enabling dispersal, recruitment, and subsequent establishment to be examined for a wide range of environmental conditions, dispersal distances, and source population sizes. Natural colonization of all phases of the artificial reef by giant kelp was rapid (within 1 year) and extended across the entire 7‐km‐long reef complex. Colonization density declined with distance from the nearest source population, but only during the first phase when the distance from the nearest source population was ≤3.5 km. Despite this decline, recruitment on artificial reef modules farthest from the source population was sufficient to produce dense stands of kelp within a couple of years. Experimental outplanting of the artificial reef with laboratory‐reared kelp embryos was largely successful but proved unnecessary, as the standing biomass of kelp resulting from natural recruitment exceeded that observed on nearby natural reefs within 2–3 years of artificial reef construction for all three phases. Such high potential for natural colonization following disturbance has important implications for kelp forest restoration efforts that employ costly and logistically difficult methods to mimic this process by active seeding and transplanting. 
    more » « less
  5. NA (Ed.)
    Coral reefs face unprecedented threats from climate change and human activities, making reef restoration increasingly important for the preservation of marine biodiversity and the sustainability of coastal communities. One promising restoration method relies on coral breeding and larval settlement, but this approach requires further innovation to achieve high rates of settlement and survival. In this study, we built on our previous work engineering lime mortar-based coral settlement substrates by investigating three different compositions of a natural hydraulic lime (NHL) base material as well as composite NHL substrates containing alkaline earth metals. These materials were tested with larvae of three reef-building Caribbean coral species: Orbicella faveolata (Mountainous star coral), Diploria labyrinthiformis (Grooved brain coral), and Colpophyllia natans (Boulder brain coral). We found that the base material composition, including its silicate and calcium carbonate (CaCO3) content, as well as the addition of the inorganic additives strontium carbonate (SrCO3), magnesium carbonate (MgCO3), and magnesium sulfate (MgSO4), all influenced coral larval settlement rates. Overall, NHL formulations with lower concentrations of silicate and higher concentrations of calcium, strontium, and magnesium carbonates significantly increased coral settlement. Further, when dissolved ions of magnesium and strontium were added to seawater, both had a significant effect on larval motility, with magnesium promoting settlement and metamorphosis in C. natans larvae, supporting the observation that these additives are also bioactive when incorporated into substrates. Our results demonstrate the potential benefits of incorporating specific inorganic ion additives such as Mg2+ and Sr2+ into substrates to facilitate early coral life history processes including settlement and metamorphosis. Further, our results highlight the importance of optimizing multiple aspects of coral substrate design, including material composition, to promote settlement and survival in coral propagation and reef restoration. 
    more » « less