skip to main content

Title: AugToAct: scaling complex human activity recognition with few labels
Human activity recognition (HAR) from wearable sensor data has recently gained widespread adoption in a number of fields. However, recognizing complex human activities, postural and rhythmic body movements (e.g., dance, sports) is challenging due to the lack of domain-specific labeling information, the perpetual variability in human movement kinematics profiles due to age, sex, dexterity and the level of professional training. In this paper, we propose a deep activity recognition model to work with limited labeled data, both for simple and complex human activities. To mitigate the intra- and inter-user spatio-temporal variability of movements, we posit novel data augmentation and domain normalization techniques. We depict a semi-supervised technique that learns noise and transformation invariant feature representation from sparsely labeled data to accommodate intra-personal and inter-user variations of human movement kinematics. We also postulate a transfer learning approach to learn domain invariant feature representations by minimizing the feature distribution distance between the source and target domains. We showcase the improved performance of our proposed framework, AugToAct, using a public HAR dataset. We also design our own data collection, annotation and experimental setup on complex dance activity recognition steps and kinematics movements where we achieved higher performance metrics with limited label data compared to more » simple activity recognition tasks. « less
; ; ;
Award ID(s):
Publication Date:
Journal Name:
16th ACM/EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (MobiQuitous), 2019
Page Range or eLocation-ID:
162 to 171
Sponsoring Org:
National Science Foundation
More Like this
  1. We explore the effect of auxiliary labels in improving the classification accuracy of wearable sensor-based human activity recognition (HAR) systems, which are primarily trained with the supervision of the activity labels (e.g. running, walking, jumping). Supplemental meta-data are often available during the data collection process such as body positions of the wearable sensors, subjects' demographic information (e.g. gender, age), and the type of wearable used (e.g. smartphone, smart-watch). This information, while not directly related to the activity classification task, can nonetheless provide auxiliary supervision and has the potential to significantly improve the HAR accuracy by providing extra guidance on how to handle the introduced sample heterogeneity from the change in domains (i.e positions, persons, or sensors), especially in the presence of limited activity labels. However, integrating such meta-data information in the classification pipeline is non-trivial - (i) the complex interaction between the activity and domain label space is hard to capture with a simple multi-task and/or adversarial learning setup, (ii) meta-data and activity labels might not be simultaneously available for all collected samples. To address these issues, we propose a novel framework Conditional Domain Embeddings (CoDEm). From the available unlabeled raw samples and their domain meta-data, we first learn amore »set of domain embeddings using a contrastive learning methodology to handle inter-domain variability and inter-domain similarity. To classify the activities, CoDEm then learns the label embeddings in a contrastive fashion, conditioned on domain embeddings with a novel attention mechanism, enforcing the model to learn the complex domain-activity relationships. We extensively evaluate CoDEm in three benchmark datasets against a number of multi-task and adversarial learning baselines and achieve state-of-the-art performance in each avenue.« less
  2. Activity Recognition (AR) models perform well with a large number of available training instances. However, in the presence of sensor heterogeneity, sensing biasness and variability of human behaviors and activities and unseen activity classes pose key challenges to adopting and scaling these pre-trained activity recognition models in the new environment. These challenging unseen activities recognition problems are addressed by applying transfer learning techniques that leverage a limited number of annotated samples and utilize the inherent structural patterns among activities within and across the source and target domains. This work proposes a novel AR framework that uses the pre-trained deep autoencoder model and generates features from source and target activity samples. Furthermore, this AR frame-work establishes correlations among activities between the source and target domain by exploiting intra- and inter-class knowledge transfer to mitigate the number of labeled samples and recognize unseen activities in the target domain. We validated the efficacy and effectiveness of our AR framework with three real-world data traces (Daily and Sports, Opportunistic, and Wisdm) that contain 41 users and 26 activities in total. Our AR framework achieves performance gains ≈ 5-6% with 111, 18, and 70 activity samples (20 % annotated samples) for Das, Opp, and Wisdmmore »datasets. In addition, our proposed AR framework requires 56, 8, and 35 fewer activity samples (10% fewer annotated examples) for Das, Opp, and Wisdm, respectively, compared to the state-of-the-art Untran model.« less
  3. Human activity recognition (HAR) is growing in popularity due to its wide-ranging applications in patient rehabilitation and movement disorders. HAR approaches typically start with collecting sensor data for the activities under consideration and then develop algorithms using the dataset. As such, the success of algorithms for HAR depends on the availability and quality of datasets. Most of the existing work on HAR uses data from inertial sensors on wearable devices or smartphones to design HAR algorithms. However, inertial sensors exhibit high noise that makes it difficult to segment the data and classify the activities. Furthermore, existing approaches typically do not make their data available publicly, which makes it difficult or impossible to obtain comparisons of HAR approaches. To address these issues, we present wearable HAR (w-HAR) which contains labeled data of seven activities from 22 users. Our dataset’s unique aspect is the integration of data from inertial and wearable stretch sensors, thus providing two modalities of activity information. The wearable stretch sensor data allows us to create variable-length segment data and ensure that each segment contains a single activity. We also provide a HAR framework to use w-HAR to classify the activities. To this end, we first perform a designmore »space exploration to choose a neural network architecture for activity classification. Then, we use two online learning algorithms to adapt the classifier to users whose data are not included at design time. Experiments on the w-HAR dataset show that our framework achieves 95% accuracy while the online learning algorithms improve the accuracy by as much as 40%.« less
  4. Recent advances in machine learning and deep neural networks have led to the realization of many important applications in the area of personalized medicine. Whether it is detecting activities of daily living or analyzing images for cancerous cells, machine learning algorithms have become the dominant choice for such emerging applications. In particular, the state-of-the-art algorithms used for human activity recognition (HAR) using wearable inertial sensors utilize machine learning algorithms to detect health events and to make predictions from sensor data. Currently, however, there remains a gap in research on whether or not and how activity recognition algorithms may become the subject of adversarial attacks. In this paper, we take the first strides on (1) investigating methods of generating adversarial example in the context of HAR systems; (2) studying the vulnerability of activity recognition models to adversarial examples in feature and signal domain; and (3) investigating the effects of adversarial training on HAR systems. We introduce Adar, a novel computational framework for optimization-driven creation of adversarial examples in sensor-based activity recognition systems. Through extensive analysis based on real sensor data collected with human subjects, we found that simple evasion attacks are able to decrease the accuracy of a deep neural networkmore »from 95.1% to 3.4% and from 93.1% to 16.8% in the case of a convolutional neural network. With adversarial training, the robustness of the deep neural network increased on the adversarial examples by 49.1% in the worst case while the accuracy on clean samples decreased by 13.2%.« less
  5. The scarcity of labeled data has traditionally been the primary hindrance in building scalable supervised deep learning models that can retain adequate performance in the presence of various heterogeneities in sample distributions. Domain adaptation tries to address this issue by adapting features learned from a smaller set of labeled samples to that of the incoming unlabeled samples. The traditional domain adaptation approaches normally consider only a single source of labeled samples, but in real world use cases, labeled samples can originate from multiple-sources – providing motivation for multi-source domain adaptation (MSDA). Several MSDA approaches have been investigated for wearable sensor-based human activity recognition (HAR) in recent times, but their performance improvement compared to single source counterpart remained marginal. To remedy this performance gap that, we explore multiple avenues to align the conditional distributions in addition to the usual alignment of marginal ones. In our investigation, we extend an existing multi-source domain adaptation approach under semi-supervised settings. We assume the availability of partially labeled target domain data and further explore the pseudo labeling usage with a goal to achieve a performance similar to the former. In our experiments on three publicly available datasets, we find that a limited labeled target domainmore »data and pseudo label data boost the performance over the unsupervised approach by 10-35% and 2-6%, respectively, in various domain adaptation scenarios.« less