skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hardware Acceleration for Fully Homomorphic Encryption Scheme Switching from CKKS to FHEW
Fully Homomorphic Encryption (FHE) presents a paradigm-shifting framework for performing computations on encrypted data, offering revolutionary implications for privacy-preserving technologies. This paper introduces a novel hardware implementation of scheme switching between two leading FHE schemes targeting different computational needs, i.e., arithmetic HE scheme CKKS, and Boolean HE scheme FHEW. The proposed architecture facilitates dynamic switching between the schemes with improved throughput and latency compared to the software baseline. The proposed architecture computation modules support scheme switching operations involving coefficient conversion, modular switching, and key switching. We also optimize the hardware designs for the pre-processing and post-processing blocks, involving key generation, encryption, and decryption. The effectiveness of our proposed design is verified on the Xilinx U280 Datacenter Acceleration FPGA. We demonstrate that the proposed scheme switching accelerator yields a 365× performance improvement over the software counterpart.  more » « less
Award ID(s):
2243053
PAR ID:
10581268
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-5405-8
Page Range / eLocation ID:
1792 to 1796
Subject(s) / Keyword(s):
Homomorphic Encryption Scheme Switching CKKS FHEW FPGA acceleration
Format(s):
Medium: X
Location:
Pacific Grove, CA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider an architecture of confidential cloud-based control synthesis based on Homomorphic Encryption (HE). Our study is motivated by the recent surge of data-driven control such as deep reinforcement learning, whose heavy computational requirements often necessitate an outsourcing to the third party server. To achieve more flexibility than Partially Homomorphic Encryption (PHE) and less computational overhead than Fully Homomorphic Encryption (FHE), we consider a Reinforcement Learning (RL) architecture over Leveled Homomorphic Encryption (LHE). We first show that the impact of the encryption noise under the Cheon-Kim-Kim-Song (CKKS) encryption scheme on the convergence of the model-based tabular Value Iteration (VI) can be analytically bounded. We also consider secure implementations of TD(0), SARSA(0) and Z-learning algorithms over the CKKS scheme, where we numerically demonstrate that the effects of the encryption noise on these algorithms are also minimal. 
    more » « less
  2. We present Argos, a simple approach for adding verifiability to fully homomorphic encryption (FHE) schemes using trusted hardware. Traditional approaches to verifiable FHE require expensive cryptographic proofs, which incur an overhead of up to seven orders of magnitude on top of FHE, making them impractical.With Argos, we show that trusted hardware can be securely used to provide verifiability for FHE computations, with minimal overhead relative to the baseline FHE computation. An important contribution of Argos is showing that the major security pitfall associated with trusted hardware, microarchitectural side channels, can be completely mitigated by excluding any secrets from the CPU and the memory hierarchy. This is made possible by focusing on building a platform that only enforces program and data integrity and not confidentiality (which is sufficient for verifiable FHE, since all data remain encrypted at all times). All secrets related to the attestation mechanism are kept in a separate coprocessor (e.g., a TPM)---inaccessible to any software-based attacker.Relying on a discrete TPM typically incurs significant performance overhead, which is why (insecure) software-based TPMs are used in practice. As a second contribution, we show that for FHE applications, the attestation protocol can be adapted to only incur a fixed cost.Argos requires no dedicated hardware extensions and is supported on commodity processors from 2008 onward. Our prototype implementation introduces 3% overhead for FHE evaluation, and 8% for more complex protocols. In particular, we show that Argos can be used for real-world applications of FHE, such as private information retrieval (PIR) and private set intersection (PSI), where providing verifiability is imperative. By demonstrating how to combine cryptography with trusted hardware, Argos paves the way for widespread deployment of FHE-based protocols beyond the semi-honest setting, without the overhead of cryptographic proofs. 
    more » « less
  3. Many applications deployed to public clouds are concerned about the confidentiality of their outsourced data, such as financial services and electronic patient records. A plausible solution to this problem is homomorphic encryption (HE), which supports certain algebraic operations directly over the ciphertexts. The downside of HE schemes is their significant, if not prohibitive, performance overhead for data-intensive workloads that are very common for outsourced databases, or database-as-a-serve in cloud computing. The objective of this work is to mitigate the performance overhead incurred by the HE module in outsourced databases. To that end, this paper proposes a radix-based parallel caching optimization for accelerating the performance of homomorphic encryption (HE) of outsourced databases in cloud computing. The key insight of the proposed optimization is caching selected radix-ciphertexts in parallel without violating existing security guarantees of the primitive/base HE scheme. We design the radix HE algorithm and apply it to both batch- and incremental-HE schemes; we demonstrate the security of those radix-based HE schemes by showing that the problem of breaking them can be reduced to the problem of breaking their base HE schemes that are known IND-CPA (i.e. Indistinguishability under Chosen-Plaintext Attack). We implement the radix-based schemes as middleware of a 10-node Cassandra cluster on CloudLab; experiments on six workloads show that the proposed caching can boost state-of-the-art HE schemes, such as Paillier and Symmetria, by up to five orders of magnitude. 
    more » « less
  4. Boldyreva, Alexandra; Kolesnikov, Vladimir (Ed.)
    Updatable Encryption (UE) and Proxy Re-encryption (PRE) allow re-encrypting a ciphertext from one key to another in the symmetric-key and public-key settings, respectively, without decryption. A longstanding open question has been the following: do unidirectional UE and PRE schemes (where ciphertext re-encryption is permitted in only one direction) necessarily require stronger/more structured assumptions as compared to their bidirectional counterparts? Known constructions of UE and PRE seem to exemplify this “gap” – while bidirectional schemes can be realized as relatively simple extensions of public-key encryption from standard assumptions such as DDH or LWE, unidirectional schemes typically rely on stronger assumptions such as FHE or indistinguishability obfuscation (iO), or highly structured cryptographic tools such as bilinear maps or lattice trapdoors. In this paper, we bridge this gap by showing the first feasibility results for realizing unidirectional UE and PRE from a new generic primitive that we call Key and Plaintext Homomorphic Encryption (KPHE) – a public-key encryption scheme that supports additive homomorphisms on its plaintext and key spaces simultaneously. We show that KPHE can be instantiated from DDH. This yields the first constructions of unidirectional UE and PRE from DDH. Our constructions achieve the strongest notions of post-compromise security in the standard model. Our UE schemes also achieve “backwards-leak directionality” of key updates (a notion we discuss is equivalent, from a security perspective, to that of unidirectionality with no-key updates). Our results establish (somewhat surprisingly) that unidirectional UE and PRE schemes satisfying such strong security notions do not, in fact, require stronger/more structured cryptographic assumptions as compared to bidirectional schemes. 
    more » « less
  5. Fully Homomorphic Encryption (FHE) enables computing on encrypted data, letting clients securely offload computation to untrusted servers. While enticing, FHE has two key challenges that limit its applicability: it has high performance overheads (10,000× over unencrypted computation) and it is extremely hard to program. Recent hardware accelerators and algorithmic improvements have reduced FHE’s overheads and enabled large applications to run under FHE. These large applications exacerbate FHE’s programmability challenges. Writing FHE programs directly is hard because FHE schemes expose a restrictive, low-level interface that prevents abstraction and composition. Specifically, FHE requires packing encrypted data into large vectors (tens of thousands of elements long), FHE provides limited operations on these vectors, and values have noise that grows with each operation, which creates unintuitive performance tradeoffs. As a result, translating large applications, like neural networks, into efficient FHE circuits takes substantial tedious work. We address FHE’s programmability challenges with the Fhelipe FHE compiler. Fhelipe exposes a simple, numpy-styletensorprogramming interface, and compiles high-level tensor programs into efficient FHE circuits. Fhelipe’s key contribution isautomatic data packing, which chooses data layouts for tensors and packs them into ciphertexts to maximize performance. Our novel framework considers a wide range of layouts and optimizes them analytically. This lets compile large FHE programs efficiently, unlike prior FHE compilers, which either use inefficient layouts or do not scale beyond tiny programs. We evaluate on both a state-of-the-art FHE accelerator and a CPU. is the first compiler that matches or exceeds the performance of large hand-optimized FHE applications, like deep neural networks, and outperforms a state-of-the-art FHE compiler by gmean 18.5. At the same time, dramatically simplifies programming, reducing code size by 10–48. 
    more » « less