skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 17, 2026

Title: Complete aqueous defluorination of PFAS in aqueous film-forming foam (AFFF) by pulsed electrolysis with tailored potential modulation
Award ID(s):
2427921
PAR ID:
10581319
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
RSC Advances
Volume:
15
Issue:
11
ISSN:
2046-2069
Page Range / eLocation ID:
8287 to 8292
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Developing efficient and robust terahertz (THz) sources is of incessant interest in the THz community for their wide applications. With successive effort in past decades, numerous groups have achieved THz wave generation from solids, gases, and plasmas. However, liquid, especially liquid water has never been demonstrated as a THz source. One main reason leading the impediment is that water has strong absorption characteristics in the THz frequency regime. A thin water film under intense laser excitation was introduced as the THz source to mitigate the considerable loss of THz waves from the absorption. Laser-induced plasma formation associated with a ponderomotive force- induced dipole model was proposed to explain the generation process. For the one-color excitation scheme, the water film generates a higher THz electric field than the air does under the identical experimental condition. Unlike the case of air, THz wave generation from liquid water prefers a sub-picosecond (200 – 800 fs) laser pulse rather than a femtosecond pulse (~50 fs). This observation results from the plasma generation process in water. For the two-color excitation scheme, the THz electric field is enhanced by one-order of magnitude in comparison with the one-color case. Meanwhile, coherent control of the THz field is achieved by adjusting the relative phase between the fundamental pulse and the second-harmonic pulse. To eliminate the total internal reflection of THz waves at the water-air interface of a water film, a water line produced by a syringe needle was used to emit THz waves. As expected, more THz radiation can be coupled out and detected. THz wave generation from other liquids were also tested. 
    more » « less
  2. null (Ed.)
    Na-ion batteries (NIBs) are promising alternatives to Li-ion batteries (LIBs) due to the low cost, abundance, and high sustainability of sodium resources. However, the high performance of inorganic electrode materials in LIBs does not extend to NIBs because of the larger ion size of Na + than Li + and more complicated electrochemistry. Therefore, it is vital to search for high-performance electrode materials for NIBs. Organic electrode materials (OEMs) with the advantages of high structural tunability and abundant structural diversity show great promise in developing high-performance NIBs. To achieve advanced OEMs for NIBs, a fundamental understanding of the structure–performance correlation is desired for rational structure design and performance optimization. In this review, recent advances in developing OEMs for non-aqueous, aqueous, and all-solid-state NIBs are presented. The challenges, advantages, mechanisms, development, and applications of advanced OEMs in NIBs are also discussed. Perspectives for the innovation of structure design principle and future research direction of OEMs in non-aqueous, aqueous, and all-solid-state NIBs are provided. 
    more » « less
  3. null (Ed.)
    Recently there has been a revival of interest in the basic structure of the aqueous or “hydrated” electron, e − (aq). According to the conventional picture, this species occupies a cavity or excluded volume in the structure of liquid water, with a characteristic absorption spectrum ascribable to s → p excitations of a particle in a quasi-spherical box. This traditional picture has been questioned over the past few years, however, on the basis of a one-electron pseudopotential model that predicts a more delocalized spin density and no distinct cavity. This Perspective reviews the known experimental properties of e − (aq) along with attempts to reproduce and understand them using both one-electron models and many-electron quantum chemistry calculations. The overwhelming weight of the evidence continues to support the conventional excluded-volume picture of the aqueous electron. 
    more » « less
  4. Abstract The narrow electrochemical stability window of water poses a challenge to the development of aqueous electrolytes. In contrast to non‐aqueous electrolytes, the products of water electrolysis do not contribute to the formation of a passivation layer on electrodes. As a result, aqueous electrolytes require the reactions of additional components, such as additives and co‐solvents, to facilitate the formation of the desired solid electrolyte interphase (SEI) on the anode and cathode electrolyte interphase (CEI) on the cathode. This review highlights the fundamental principles and recent advancements in generating electrolyte interphases in aqueous batteries. 
    more » « less