skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Organic electrode materials for non-aqueous, aqueous, and all-solid-state Na-ion batteries
Na-ion batteries (NIBs) are promising alternatives to Li-ion batteries (LIBs) due to the low cost, abundance, and high sustainability of sodium resources. However, the high performance of inorganic electrode materials in LIBs does not extend to NIBs because of the larger ion size of Na + than Li + and more complicated electrochemistry. Therefore, it is vital to search for high-performance electrode materials for NIBs. Organic electrode materials (OEMs) with the advantages of high structural tunability and abundant structural diversity show great promise in developing high-performance NIBs. To achieve advanced OEMs for NIBs, a fundamental understanding of the structure–performance correlation is desired for rational structure design and performance optimization. In this review, recent advances in developing OEMs for non-aqueous, aqueous, and all-solid-state NIBs are presented. The challenges, advantages, mechanisms, development, and applications of advanced OEMs in NIBs are also discussed. Perspectives for the innovation of structure design principle and future research direction of OEMs in non-aqueous, aqueous, and all-solid-state NIBs are provided.  more » « less
Award ID(s):
2000102
NSF-PAR ID:
10220308
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry A
ISSN:
2050-7488
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Due to the low cost and abundance of multivalent metallic resources (Mg/Al/Zn/Ca), multivalent rechargeable batteries (MRBs) are promising alternatives to Li-ion and Pb-acid batteries for grid-scale stationary energy storage applications. However, the high performance of inorganic electrode materials in Li-ion batteries does not extend to MRBs, because the high charge density of multivalent cations dramatically reduces their diffusivity in the crystal lattice of inorganic materials. To achieve high-performance MRBs, organic electrode materials (OEMs) with abundant structural diversity and high structural tunability offer opportunities. This review presents an overview of the state-of-the-art OEMs in MRBs, including non-aqueous rechargeable Mg/Al/Zn and aqueous rechargeable Mg/Al/Zn/Ca batteries. The advantages, challenges, development, mechanism, structure, and performance of OEMs in MRBs are discussed in detail. To provide a comprehensive and thorough understanding of OEMs in MRBs, the correlation between molecular structure and electrochemical behavior is also summarized and discussed. This review offers insights for the rational structure design and performance optimization of advanced OEMs in MRBs. 
    more » « less
  2. Abstract

    Redox‐active polymers (RAPs) are promising organic electrode materials for affordable and sustainable batteries due to their flexible chemical structures and negligible solubility in the electrolyte. Developing high‐dimensional RAPs with porous structures and crosslinkers can further improve their stability and redox capability by reducing the solubility and enhancing reaction kinetics. This work reports two three‐dimensional (3D) RAPs as stable organic cathodes in Na‐ion batteries (NIBs) and K‐ion batteries (KIBs). Carbonyl functional groups are incorporated into the repeating units of the RAPs by the polycondensation of Tetrakis(4‐aminophenyl)methane and two different dianhydrides. The RAPs with interconnected 3D extended conjugation structures undergo multi‐electron redox reactions and exhibit high performance in both NIBs and KIBs in terms of long cycle life (up to 8000 cycles) and fast charging capability (up to 2 A g−1). The results demonstrate that developing 3D RAPs is an effective strategy to achieve high‐performance, affordable, and sustainable NIBs and KIBs.

     
    more » « less
  3. Abstract

    Developing low‐voltage carboxylate anode materials is critical for achieving low‐cost, high‐performance, and sustainable Na‐ion batteries (NIBs). However, the structure design rationale and structure‐performance correlation for organic carboxylates in NIBs remains elusive. Herein, the spatial effect on the performance of carboxylate anode materials is studied by introducing heteroatoms in the conjugation structure and manipulating the positions of carboxylate groups in the aromatic rings. Planar and twisted organic carboxylates are designed and synthesized to gain insight into the impact of geometric structures to the electrochemical performance of carboxylate anodes in NIBs. Among the carboxylates, disodium 2,2’‐bipyridine‐5,5’‐dicarboxylate (2255‐Na) with a planar structure outperforms the others in terms of highest specific capacity (210 mAh g−1), longest cycle life (2000 cycles), and best rate capability (up to 5 A g−1). The cyclic stability and redox mechanism of 2255‐Na in NIBs are exploited by various characterization techniques. Moreover, high‐temperature (up to 100 °C) and all‐organic batteries based on a 2255‐Na anode, a polyaniline (PANI) cathode, and an ether‐based electrolyte are achieved and exhibited exceptional electrochemical performance. Therefore, this work demonstrates that designing organic carboxylates with extended planar conjugation structures is an effective strategy to achieve high‐performance and sustainable NIBs.

     
    more » « less
  4. Layer-structured Na intercalation compounds such as NaxMO2 (M=Co, Mn, Cr) have attracted much attention as cathode materials for sodium-ion batteries due to their high volumetric and gravimetric energy densities. Among them, NaCrO2 with layered rock salt structure is one of the promising cathodes since NaCrO2 has a desirable flat and smooth charge/discharge voltage plateau.1 In addition, NaCrO2 has the highest thermal stability at charged state which makes it a potentially safer cathode material.2 The NaCrO2 exhibits a reversible capacity of 110 mAh g-1 with good cycling performance.3 However, the transition metal oxide (TMO) cathode materials in NIBs undergo severe chemo-mechanical deformations which leads to capacity fade and poor cycling and is the limiting factor of NIBs. The electrochemical characterization and examination of the electrode structure were the primary focus of several investigations. To improve the lifespan and performance of electrode materials for Na-ion batteries, it is vital to comprehend how Na ions impact the chemo-mechanical stability of the electrodes. In this talk, we will discuss the driving forces behind the structural and interfacial deformations on NaCrO2 cathodes. Digital image correlation measurements were conducted to probe strain evolution in the electrode during cycling. The free-standing composite NaCrO2 electrode was used for stain measurements in custom-cell assembly. The battery was cycled against Na metal in 1 M NaClO4 in PC. The first part of the study involves structural and interfacial deformations in the lower voltage range of 2.3 V to 3.5 V where x<0.5 in NaxCrO2. And the second part focuses on the structural and interfacial deformations in the voltage range of 2.3 V to 4.7 V where x>0.5 in NaxCrO2. In the preliminary studies, we observed that the initial insertion of Na ions leads to negative strain evolution (contraction) in the electrode, followed by expansions in the electrode at a higher state of discharge. Similar phenomena are also observed during charge cycles, where extraction of Na results in an initial contraction in the electrode, followed by expansion at a higher state of charge. Understanding the mechanisms behind chemo-mechanical deformations will allow to tune structure & material property for better electrochemical performance. 
    more » « less
  5. Abstract

    Metal negative electrodes that alloy with lithium have high theoretical charge storage capacity and are ideal candidates for developing high-energy rechargeable batteries. However, such electrode materials show limited reversibility in Li-ion batteries with standard non-aqueous liquid electrolyte solutions. To circumvent this issue, here we report the use of non-pre-lithiated aluminum-foil-based negative electrodes with engineered microstructures in an all-solid-state Li-ion cell configuration. When a 30-μm-thick Al94.5In5.5negative electrode is combined with a Li6PS5Cl solid-state electrolyte and a LiNi0.6Mn0.2Co0.2O2-based positive electrode, lab-scale cells deliver hundreds of stable cycles with practically relevant areal capacities at high current densities (6.5 mA cm−2). We also demonstrate that the multiphase Al-In microstructure enables improved rate behavior and enhanced reversibility due to the distributed LiIn network within the aluminum matrix. These results demonstrate the possibility of improved all-solid-state batteries via metallurgical design of negative electrodes while simplifying manufacturing processes.

     
    more » « less