The stability of the West Antarctic Ice Sheet (WAIS), crucial for predicting future sea-level rise, is threatened by ocean-forced melting in the Pacific sector of the Southern Ocean. While some geological records and ice-sheet models suggest WAIS retreat during past warm periods, reliable data constraining the extent of retreat are lacking. Detrital Nd, Sr, and Pb isotope data of sediments recently drilled at International Ocean Discovery Program (IODP) Site U1532 on the Amundsen Sea continental rise manifest repeated alternations in sediment provenance during glacial–interglacial cycles of the Pliocene (5.33 to 2.58 Mya), a time warmer than present. The variations reflect large fluctuations in WAIS extent on the Antarctic continent. A unique high Pb/low εNdsignature of sediments found at the onset of glacial intervals (3.88, 3.6, and 3.33 Ma) is attributed to the supply of detritus sourced from plutonic rocks located in the West Antarctic interior. Its isotopic signature at Site U1532 indicates major inland retreat of the WAIS during the preceding interglacials. During peak interglacials, the ice margin had retreated inland, and icebergs rafted and deposited inland-sourced detritus over 500 km across the Amundsen Sea shelf. Subsequent readvance of grounded ice then “bulldozed” these inland-derived fine-grained sediments from the shelf down to the continental slope and rise, resulting in a high Pb/low εNdpeak in the rise sediments. Our continuous Pliocene records provide conclusive evidence for at least five major inland retreat events of the WAIS, highlighting the significant vulnerability of the WAIS to ongoing warming.
more »
« less
Byrd Ice Core Debris Constrains the Sediment Provenance Signature of Central West Antarctica
Abstract Provenance records from sediments deposited offshore of the West Antarctic Ice Sheet (WAIS) can help identify past major ice retreat, thus constraining ice‐sheet models projecting future sea‐level rise. Interpretations from such records are, however, hampered by the ice obscuring Antarctica's geology. Here, we explore central West Antarctica's subglacial geology using basal debris from within the Byrd ice core, drilled to the bed in 1968. Sand grain microtextures and a high kaolinite content (∼38–42%) reveal the debris consists predominantly of eroded sedimentary detritus, likely deposited initially in a warm, pre‐Oligocene, subaerial environment. Detrital hornblende40Ar/39Ar ages suggest proximal late Cenozoic subglacial volcanism. The debris has a distinct provenance signature, with: common Permian‐Early Jurassic mineral grains; absent early Ross Orogeny grains; a high kaolinite content; and high143Nd/144Nd and low87Sr/86Sr ratios. Detecting this “fingerprint” in Antarctic sedimentary records could imply major WAIS retreat, revealing the WAIS's sensitivity to future warming.
more »
« less
- Award ID(s):
- 1917009
- PAR ID:
- 10581399
- Publisher / Repository:
- AGU Publocations
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 51
- Issue:
- 5
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Ice loss in the Southern Hemisphere has been greatest over the past 30 years in West Antarctica. The high sensitivity of this region to climate change has motivated geologists to examine marine sedimentary records for evidence of past episodes of West Antarctic Ice Sheet (WAIS) instability. Sediments accumulating in the Scotia Sea are useful to examine for this purpose because they receive iceberg‐rafted debris (IBRD) sourced from the Pacific‐ and Atlantic‐facing sectors of West Antarctica. Here we report on the sedimentology and provenance of the oldest of three cm‐scale coarse‐grained layers recovered from this sea at International Ocean Discovery Program Site U1538. These layers are preserved in opal‐rich sediments deposited ∼1.2 Ma during a relatively warm regional climate. Our microCT‐based analysis of the layer's in‐situ fabric confirms its ice‐rafted origin. We further infer that it is the product of an intense but short‐lived episode of IBRD deposition. Based on the petrography of its sand fraction and the Phanerozoic40Ar/39Ar ages of hornblende and mica it contains, we conclude that the IBRD it contains was likely sourced from the Weddell Sea and/or Amundsen Sea embayment(s) of West Antarctica. We attribute the high concentrations of IBRD in these layers to “dirty” icebergs calved from the WAIS following its retreat inland from its modern grounding line. These layers also sit at the top of a ∼366‐m thick Pliocene and early Pleistocene sequence that is much more dropstone‐rich than its overlying sediments. We speculate this fact may reflect that WAIS mass‐balance was highly dynamic during the ∼41‐kyr (inter)glacial world.more » « less
-
The stability of the West Antarctic Ice Sheet (WAIS), crucial for preventing major future sea-level rise, is threatened by ocean-forced melting in the Pacific sector, especially in the Amundsen Sea. So far, direct evidence of the extent and rate of WAIS retreat during past warm periods has been lacking. Here, we analyzed detrital Nd, Sr, and Pb isotope data of sediments ( 18.93 for 206Pb/204Pb) and low eNd (< –5 eNd) values. This distinct isotopic signature suggests long-distance supply of detritus sourced from plutonic rocks located in the continental interior. The presence of this material at Site U1532 indicates major inland retreat of the WAIS during the immediately preceding interglacials, which allowed icebergs to transport and deposit the detritus on the Amundsen Sea shelf. Our Pliocene records reveal multiple major inland retreats of the WAIS, highlighting the extent of possible WAIS response to ongoing global warming.more » « less
-
Large-scale geological structures have controlled the long-term development of the bed and thus the flow of the West Antarctic Ice Sheet (WAIS). However, complete ice cover has obscured the age and exact positions of faults and geological boundaries beneath Thwaites Glacier and Pine Island Glacier, two major WAIS outlets in the Amundsen Sea sector. Here, we characterize the only rock outcrop between these two glaciers, which was exposed by the retreat of slow-flowing coastal ice in the early 2010s to form the new Sif Island. The island comprises granite, zircon U-Pb dated to ~177–174 Ma and characterized by initial ɛNd,87Sr/86Sr and ɛHfisotope compositions of -2.3, 0.7061 and -1.3, respectively. These characteristics resemble Thurston Island/Antarctic Peninsula crustal block rocks, strongly suggesting that the Sif Island granite belongs to this province and placing the crustal block's boundary with the Marie Byrd Land province under Thwaites Glacier or its eastern shear margin. Low-temperature thermochronological data reveal that the granite underwent rapid cooling following emplacement, rapidly cooled again at ~100–90 Ma and then remained close to the Earth's surface until present. These data help date vertical displacement across the major tectonic structure beneath Pine Island Glacier to the Late Cretaceous.more » « less
-
The Wilkes and Aurora basins are large, low‐lying sub‐glacial basins that may cause areas of weakness in the overlying East Antarctic ice sheet. Previous work based on ice‐rafted debris (IRD) provenance analyses found evidence for massive iceberg discharges from these areas during the late Miocene and Pliocene. Here we characterize the sediments shed from the inferred areas of weakness along this margin (94°E to 165°E) by measuring40Ar/39Ar ages of 292 individual detrital hornblende grains from eight marine sediment core locations off East Antarctica and Nd isotopic compositions of the bulk fine fraction from the same sediments. We further expand the toolbox for Antarctic IRD provenance analyses by exploring the application of40Ar/39Ar ages of detrital biotites; biotite as an IRD tracer eliminates lithological biases imposed by only analyzing hornblendes and allows for characterization of samples with low IRD concentrations. Our data quadruples the number of detrital40Ar/39Ar ages from this margin of East Antarctica and leads to the following conclusions: (1) Four main sectors between the Ross Sea and Prydz Bay, separated by ice drainage divides, are distinguishable based upon the combination of40Ar/39Ar ages of detrital hornblende and biotite grains and theεNdof the bulk fine fraction; (2)40Ar/39Ar biotite ages can be used as a robust provenance tracer for this part of East Antarctica; and (3) sediments shed from the coastal areas of the Aurora and Wilkes sub‐glacial basins can be clearly distinguished from one another based upon their isotopic fingerprints.more » « less
An official website of the United States government

