Quorum sensing is a cell–cell communication process that bacteria use to orchestrate group behaviors. Quorum sensing is mediated by signal molecules called autoinducers. Autoinducers are often structurally similar, raising questions concerning how bacteria distinguish among them. Here, we use thePseudomonas aeruginosaLasR quorum-sensing receptor to explore signal discrimination. The cognate autoinducer, 3OC12homoserine lactone (3OC12HSL), is a more potent activator of LasR than other homoserine lactones. However, other homoserine lactones can elicit LasR-dependent quorum-sensing responses, showing that LasR displays ligand promiscuity. We identify mutants that alter which homoserine lactones LasR detects. Substitution at residue S129 decreases the LasR response to 3OC12HSL, while enhancing discrimination against noncognate autoinducers. Conversely, the LasR L130F mutation increases the potency of 3OC12HSL and other homoserine lactones. We solve crystal structures of LasR ligand-binding domains complexed with noncognate autoinducers. Comparison with existing structures reveals that ligand selectivity/sensitivity is mediated by a flexible loop near the ligand-binding site. We show that LasR variants with modified ligand preferences exhibit altered quorum-sensing responses to autoinducers in vivo. We suggest that possessing some ligand promiscuity endows LasR with the ability to optimally regulate quorum-sensing traits.
more »
« less
Metal- versus ligand-centered reactivity of a cobalt-phenylenediamide complex with electrophiles
A cobalt complex with a phenylenediamide redox-active ligand reacts with an electrophilic trifluoromethyl source to generate a robust Co–CF3bond, while in contrast, treatment with alkyl electrophiles occurs at the ligand scaffold.
more »
« less
- Award ID(s):
- 2117792
- PAR ID:
- 10581505
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Dalton Transactions
- Volume:
- 53
- Issue:
- 31
- ISSN:
- 1477-9226
- Page Range / eLocation ID:
- 13174 to 13183
- Subject(s) / Keyword(s):
- Cobalt complexes Ligand-centered reactivity
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Crystals of the title salt, (C8H20N)[Sn(C6H5)3(C2H2O2S)], comprise diisobutylammonium cations and mercaptoacetatotriphenylstannate(IV) anions. The bidentate binding mode of the mercaptoacetate ligand gives rise to a five-coordinated, ionic triphenyltin complex with a distortedcis-trigonal–bipyramidal geometry around the tin atom. In the crystal, charge-assisted ammonium-N—H...O(carboxylate) hydrogen-bonding connects two cations and two anions into a four-ion aggregate. Two positions were resolved for one of the phenyl rings with the major component having a site occupancy factor of 0.60 (3).more » « less
-
Abstract We introduce the heterocumulene ligand [(Ad)NCC(tBu)]−(Ad=1‐adamantyl (C10H15),tBu=tert‐butyl, (C4H9)), which can adopt two forms, the azaalleneyl and ynamide. This ligand platform can undergo a reversible chelotropic shift using Brønsted acid‐base chemistry, which promotes an unprecedented spin‐state change of the [VIII] ion. These unique scaffolds are prepared via addition of 1‐adamantyl isonitrile (C≡NAd) across the alkylidyne in complexes [(BDI)V≡CtBu(OTf)] (A) (BDI−=ArNC(CH3)CHC(CH3)NAr), Ar=2,6‐iPr2C6H3) and [(dBDI)V≡CtBu(OEt2)] (B) (dBDI2−=ArNC(CH3)CHC(CH2)NAr). ComplexAreacts with C≡NAd, to generate the high‐spin [VIII] complex with a κ1‐N‐ynamide ligand, [(BDI)V{κ1‐N‐(Ad)NCC(tBu)}(OTf)] (1). Conversely,Breacts with C≡NAd to generate a low‐spin [VIII] diamagnetic complex having a chelated κ2‐C,N‐azaalleneyl ligand, [(dBDI)V{κ2‐N,C‐(Ad)NCC(tBu)}] (2). Theoretical studies have been applied to better understand the mechanism of formation of2and the electronic reconfiguration upon structural rearrangement by the alteration of ligand denticity between1and2.more » « less
-
Abstract The substituent effect on the magnitude of the circularly polarized luminescence (CPL) ofMentCAAC‐Cu‐X (X=F, Cl, Br, I, BH4, B3H8; CAAC=cyclic (alkyl)(amino)carbenes) complexes is experimentally investigated. This study examines seven pairs of enantiomeric complexes with small anionic substituents (halides, borohydrides, hydride). The complexes are fully characterized, including single crystal X‐ray diffraction studies, and chiroptical measurements show that small covalent anions induce a larger CPL magnitude. These results demonstrate that the magnitude of the CPL can be manipulated without making any modifications to the chiral ligand.more » « less
-
Abstract Thesynandantiisomers of [FeIV(O)(TMC)]2+(TMC=tetramethylcyclam) represent the first isolated pair of synthetic non‐heme oxoiron(IV) complexes with identical ligand topology, differing only in the position of the oxo unit bound to the iron center. Both isomers have previously been characterized. Reported here is that thesynisomer [FeIV(Osyn)(TMC)(NCMe)]2+(2) converts into itsantiform [FeIV(Oanti)(TMC)(NCMe)]2+(1) in MeCN, an isomerization facilitated by water and monitored most readily by1H NMR and Raman spectroscopy. Indeed, when H218O is introduced to2, the nascent1becomes18O‐labeled. These results provide compelling evidence for a mechanism involving direct binding of a water moleculetransto the oxo atom in2with subsequent oxo–hydroxo tautomerism for its incorporation as the oxo atom of1. The nonplanar nature of the TMC supporting ligand makes this isomerization an irreversible transformation, unlike for their planar heme counterparts.more » « less
An official website of the United States government

