skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 1, 2025

Title: Untethered Fluidic Engine for High‐Force Soft Wearable Robots
Fluid‐driven artificial muscles exhibit a behavior similar to biological muscles which makes them attractive as soft actuators for wearable assistive robots. However, state‐of‐the‐art fluidic systems typically face challenges to meet the multifaceted needs of soft wearable robots. First, soft robots are usually constrained to tethered pressure sources or bulky configurations based on flow control valves for delivery and control of high assistive forces. Second, although some soft robots exhibit untethered operation, they are significantly limited to low force capabilities. Herein, an electrohydraulic actuation system that enables both untethered and high‐force soft wearable robots is presented. This solution is achieved through a twofold design approach. First, a simplified direct‐drive actuation paradigm composed of motor, gear‐pump, and hydraulic artificial muscle (HAM) is proposed, which allows for a compact and lightweight (1.6 kg) valveless design. Second, a fluidic engine composed of a high‐torque motor with a custom‐designed gear pump is created, which is capable of generating high pressure (up to 0.75 MPa) to drive the HAM in delivering high forces (580 N). Experimental results show that the developed fluidic engine significantly outperforms state‐of‐the‐art systems in mechanical efficiency and suggest opportunities for effective deployment in soft wearable robots for human assistance.  more » « less
Award ID(s):
2227091
PAR ID:
10581586
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Advanced Intelligent Systems
Volume:
6
Issue:
11
ISSN:
2640-4567
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In soft devices, complex actuation sequences and precise force control typically require hard electronic valves and microcontrollers. Existing designs for entirely soft pneumatic control systems are capable of either digital or analog operation, but not both, and are limited by speed of actuation, range of pressure, time required for fabrication, or loss of power through pull-down resistors. Using the nonlinear mechanics intrinsic to structures composed of soft materials—in this case, by leveraging membrane inversion and tube kinking—two modular soft components are developed: a piston actuator and a bistable pneumatic switch. These two components combine to create valves capable of analog pressure regulation, simplified digital logic, controlled oscillation, nonvolatile memory storage, linear actuation, and interfacing with human users in both digital and analog formats. Three demonstrations showcase the capabilities of systems constructed from these valves: 1) a wearable glove capable of analog control of a soft artificial robotic hand based on input from a human user’s fingers, 2) a human-controlled cushion matrix designed for use in medical care, and 3) an untethered robot which travels a distance dynamically programmed at the time of operation to retrieve an object. This work illustrates pathways for complementary digital and analog control of soft robots using a unified valve design. 
    more » « less
  2. null (Ed.)
    Artificial muscles based on stimuli-responsive polymers usually exhibit mechanical compliance, versatility, and high power-to-weight ratio, showing great promise to potentially replace conventional rigid motors for next-generation soft robots, wearable electronics, and biomedical devices. In particular, thermomechanical liquid crystal elastomers (LCEs) constitute artificial muscle-like actuators that can be remotely triggered for large stroke, fast response, and highly repeatable actuations. Here, we introduce a digital light processing (DLP)–based additive manufacturing approach that automatically shear aligns mesogenic oligomers, layer-by-layer, to achieve high orientational order in the photocrosslinked structures; this ordering yields high specific work capacity (63 J kg −1 ) and energy density (0.18 MJ m −3 ). We demonstrate actuators composed of these DLP printed LCEs’ applications in soft robotics, such as reversible grasping, untethered crawling, and weightlifting. Furthermore, we present an LCE self-sensing system that exploits thermally induced optical transition as an intrinsic option toward feedback control. 
    more » « less
  3. Soft robotics enriches the robotic functionalities by engineering soft materials and electronics toward enhanced compliance, adaptivity, and friendly human machine. This decade has witnessed extraordinary progresses and benefits in scaling down soft robotics to small scale for a wide range of potential and promising applications, including medical and surgical soft robots, wearable and rehabilitation robots, and unconstructed environments exploration. This perspective highlights recent research efforts in miniature soft robotics in a brief and comprehensive way in terms of actuation, powering, designs, fabrication, control, and applications in four sections. Section 2 discusses the key aspects of materials selection and structural designs for small‐scale tethered and untethered actuation and powering, including fluidic actuation, stimuli‐responsive actuation, and soft living biohybrid materials, as well as structural forms from 1D to 3D. Section 3 discusses the advanced manufacturing techniques at small scales for fabricating miniature soft robots, including lithography, mechanical self‐assembly, additive manufacturing, tissue engineering, and other fabrication methods. Section 4 discusses the control systems used in miniature robots, including off‐board/onboard controls and artificial intelligence‐based controls. Section 5 discusses their potential broad applications in healthcare, small‐scale objects manipulating and processing, and environmental monitoring. Finally, outlooks on the challenges and opportunities are discussed. 
    more » « less
  4. In this paper, we investigate the design of pennate topology fluidic artificial muscle bundles under spatial constraints. Soft fluidic actuators are of great interest to roboticists and engineers, due to their potential for inherent compliance and safe human–robot interaction. McKibben fluidic artificial muscles are an especially attractive type of soft fluidic actuator, due to their high force-to-weight ratio, inherent flexibility, inexpensive construction, and muscle-like force-contraction behavior. The examination of natural muscles has shown that those with pennate fiber topology can achieve higher output force per geometric cross-sectional area. Yet, this is not universally true for fluidic artificial muscle bundles, because the contraction and rotation behavior of individual actuator units (fibers) are both key factors contributing to situations where bipennate muscle topologies are advantageous, as compared to parallel muscle topologies. This paper analytically explores the implications of pennation angle on pennate fluidic artificial muscle bundle performance with spatial bounds. A method for muscle bundle parameterization as a function of desired bundle spatial envelope dimensions has been developed. An analysis of actuation performance metrics for bipennate and parallel topologies shows that bipennate artificial muscle bundles can be designed to amplify the muscle contraction, output force, stiffness, or work output capacity, as compared to a parallel bundle with the same envelope dimensions. In addition to quantifying the performance trade space associated with different pennate topologies, analyzing bundles with different fiber boundary conditions reveals how bipennate fluidic artificial muscle bundles can be designed for extensile motion and negative stiffness behaviors. This study, therefore, enables tailoring the muscle bundle parameters for custom compliant actuation applications. 
    more » « less
  5. In this paper, we investigate the design of pennate topology fluidic artificial muscle bundles under spatial and operating constraints. Soft fluidic actuators are of great interest to roboticists and engineers due to their potential for inherent compliance and safe human-robot interaction. McKibben fluidic artificial muscles (FAMs) are soft fluidic actuators that are especially attractive due to their high force-to-weight ratio, inherent flexibility, relatively inexpensive construction, and muscle-like force-contraction behavior. Observations of natural muscles of equivalent cross-sectional area have indicated that muscles with a pennate fiber configuration can achieve higher output forces as compared to the parallel configuration due to larger physiological cross-sectional area (PCSA). However, this is not universally true because the contraction and rotation behavior of individual actuator units (fibers) are both key factors contributing to situations where bipennate muscle configurations are advantageous as compared to parallel muscle configurations. This paper analytically explores a design case for pennate topology artificial muscle bundles that maximize fiber radius. The findings can provide insights on optimizing artificial muscle topologies under spatial constraints. Furthermore, the study can be extended to evaluate muscle topology implications on work capacity and efficiency for tracking a desired dynamic motion. 
    more » « less