skip to main content

Title: Digital light processing of liquid crystal elastomers for self-sensing artificial muscles
Artificial muscles based on stimuli-responsive polymers usually exhibit mechanical compliance, versatility, and high power-to-weight ratio, showing great promise to potentially replace conventional rigid motors for next-generation soft robots, wearable electronics, and biomedical devices. In particular, thermomechanical liquid crystal elastomers (LCEs) constitute artificial muscle-like actuators that can be remotely triggered for large stroke, fast response, and highly repeatable actuations. Here, we introduce a digital light processing (DLP)–based additive manufacturing approach that automatically shear aligns mesogenic oligomers, layer-by-layer, to achieve high orientational order in the photocrosslinked structures; this ordering yields high specific work capacity (63 J kg −1 ) and energy density (0.18 MJ m −3 ). We demonstrate actuators composed of these DLP printed LCEs’ applications in soft robotics, such as reversible grasping, untethered crawling, and weightlifting. Furthermore, we present an LCE self-sensing system that exploits thermally induced optical transition as an intrinsic option toward feedback control.
; ; ; ; ; ; ;
Award ID(s):
1825444 1719875
Publication Date:
Journal Name:
Science Advances
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we present a method to pattern liquid crystal elastomers (LCEs) in the micrometer range without using any mechanical processing steps to prepare micron sized LCE actuators compatible with microelectromechanical system (MEMS) technology. Multi-layer spin-coating processes are developed to synthesise and structure 300–3500 nm thick LCE films. A water soluble sacrificial layer, a photoalignment layer and a LCE formulation, which is polymerised and crosslinked in its liquid crystal phase, are spin-coated successively onto a substrate. A fluorinated photoresist layer is used to structure LCE films with thicknesses up to 700 nm in a photolithographic and etching process. For thicker LCE films a hard mask process, using hydrogen silsesquioxane (HSQ) as hard mask, is used. Film thicknesses and homogeneities are analysed with profilometry. Actuation motions of LCE layers are investigated before and after patterning and LCE patterns are investigated via (polarised optical) microscopy (POM), scanning electron microscopy (SEM) and profilometry. A resolution of 1.5–2.0 microns is achieved with the described techniques, which make deformable micron sized LCE actuators of variable shape and director orientation accessible. The presented results demonstrate the potential of LCEs in MEMS devices.
  2. Continuous and controlled shape morphing is essential for soft machines to conform, grasp, and move while interacting safely with their surroundings. Shape morphing can be achieved with two-dimensional (2D) sheets that reconfigure into target 3D geometries, for example, using stimuli-responsive materials. However, most existing solutions lack the ability to reprogram their shape, face limitations on attainable geometries, or have insufficient mechanical stiffness to manipulate objects. Here, we develop a soft, robotic surface that allows for large, reprogrammable, and pliable shape morphing into smooth 3D geometries. The robotic surface consists of a layered design composed of two active networks serving as artificial muscles, one passive network serving as a skeleton, and cover scales serving as an artificial skin. The active network consists of a grid of strips made of heat-responsive liquid crystal elastomers (LCEs) containing stretchable heating coils. The magnitude and speed of contraction of the LCEs can be controlled by varying the input electric currents. The 1D contraction of the LCE strips activates in-plane and out-of-plane deformations; these deformations are both necessary to transform a flat surface into arbitrary 3D geometries. We characterize the fundamental deformation response of the layers and derive a control scheme for actuation. We demonstrate thatmore »the robotic surface provides sufficient mechanical stiffness and stability to manipulate other objects. This approach has potential to address the needs of a range of applications beyond shape changes, such as human-robot interactions and reconfigurable electronics.

    « less
  3. Soft, stretchable sensors, such as artificial skins or tactile sensors, are attractive for numerous soft robotic applications due to the low material compliance. Conductive polymers are a necessary component of many soft sensors, and this work presents the electromechanical characterization of 3D-printable conductive polymer composites. Dog-bone shaped samples were 3D printed using a digital light processing (DLP)-based 3D printer for characterization. The 3D printable resin consists of monomer, crosslinker, conductive nano-filler, and a photo-initiator. The characterization was performed in two tracks. First, the effect of two different crosslinkers was investigated with different compositions and second, the effect of concentration of conductive nano-fillers was explored. Crosslinkers were chosen by referring to previous studies, and carbon nanotubes (CNTs) were utilized as conductive nano-fillers. The samples were 3D printed and characterized using an electromechanical test setup. To demonstrate utility for 3D printed soft robotics, a capacitance-based joystick sensor composed of both conductive and non-conductive resins was 3D printed.
  4. In this paper, we investigate the design of pennate topology fluidic artificial muscle bundles under spatial and operating constraints. Soft fluidic actuators are of great interest to roboticists and engineers due to their potential for inherent compliance and safe human-robot interaction. McKibben fluidic artificial muscles (FAMs) are soft fluidic actuators that are especially attractive due to their high force-to-weight ratio, inherent flexibility, relatively inexpensive construction, and muscle-like force-contraction behavior. Observations of natural muscles of equivalent cross-sectional area have indicated that muscles with a pennate fiber configuration can achieve higher output forces as compared to the parallel configuration due to larger physiological cross-sectional area (PCSA). However, this is not universally true because the contraction and rotation behavior of individual actuator units (fibers) are both key factors contributing to situations where bipennate muscle configurations are advantageous as compared to parallel muscle configurations. This paper analytically explores a design case for pennate topology artificial muscle bundles that maximize fiber radius. The findings can provide insights on optimizing artificial muscle topologies under spatial constraints. Furthermore, the study can be extended to evaluate muscle topology implications on work capacity and efficiency for tracking a desired dynamic motion.
  5. Lakhtakia, Akhlesh ; Martín-Palma, Raúl J. ; Knez, Mato (Ed.)
    In this study, the implementation and performance of bipennate topology fluidic artificial muscle (FAM) bundles operating under varying boundary conditions is investigated and quantified experimentally. Soft actuators are of great interest to design engineers due to their inherent flexibility and potential to improve safety in human robot interactions. McKibben fluidic artificial muscles are soft actuators which exhibit high force to weight ratios and dynamically replicate natural muscle movement. These features, in addition to their low fabrication cost, set McKibben FAMs apart as attractive components for an actuation system. Previous studies have shown that there are significant advantages in force and contraction outputs when using bipennate topology FAM bundles as compared to the conventional parallel topology1 . In this study, we will experimentally explore the effects of two possible boundary conditions imposed on FAMs within a bipennate topology. One boundary condition is to pin the muscle fiber ends with fixed pin spacings while the other is biologically inspired and constrains the muscle fibers to remain in contact. This paper will outline design considerations for building a test platform for bipennate fluidic artificial muscle bundles with varying boundary conditions and present experimental results quantifying muscle displacement and force output. These metrics aremore »used to analyze the tradespace between the two boundary conditions and the effect of varying pennation angles.« less