skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 8, 2026

Title: An at-home Plant Physiology laboratory applied to dark-induced leaf senescence by college students and science teachers
Dark-induced leaf senescence is an extreme example of leaf senescence induced by light deprivation. Prolonged dark treatments of individual leaves result in chlorophyll degradation, macromolecule catabolism, and reduction of photosynthesis. In this work, we described an at-home Dark-induced Leaf Senescence laboratory exercise for a junior-level undergraduate Plant Physiology course. To perform the dark-induced senescence assay on attached leaves, students may cover individual leaves of an outdoor plant with aluminum foils and record the leaf morphology with controlled vocabularies for ~9 days. To perform senescence assays on detached leaves, the students may incubate detached leaves in various aqueous solutions (e.g., tap water, sucrose solution, alkali solution, and acid solution) either in the dark or under natural light, and then record the leaf morphology with controlled vocabularies for ~9 days. This laboratory exercise provides hands-on opportunities for students to understand the relationships among sunlight, chlorophyll, and photosynthesis, in the comfort of students' own homes. Specifically, it helps students to comprehend intrinsic and dark-induced leaf senescence mechanisms, the effects of sugars on leaf senescence, and the importance of optimal pH to plant health. This laboratory exercise can be adapted to support inquiry-based learning or be implemented in a middle or high school classroom.  more » « less
Award ID(s):
2146882
PAR ID:
10581623
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
bioRxiv
Date Published:
Format(s):
Medium: X
Institution:
bioRxiv
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The responses of plant photosynthesis to rapid fluctuations in environmental conditions are thought to be critical for efficient conversion of light energy. Such responses are not well represented under laboratory conditions, but have also been difficult to probe in complex field environments. We demonstrate an open science approach to this problem that combines multifaceted measurements of photosynthesis and environmental conditions, and an unsupervised statistical clustering approach. In a selected set of data on mint (Mentha sp.), we show that the “light potential” for increasing linear electron flow (LEF) and nonphotochemical quenching (NPQ) upon rapid light increases are strongly suppressed in leaves previously exposed to low ambient PAR or low leaf temperatures, factors that can act both independently and cooperatively. Further analyses allowed us to test specific mechanisms. With decreasing leaf temperature or PAR, limitations to photosynthesis during high light fluctuations shifted from rapidly-induced NPQ to photosynthetic control (PCON) of electron flow at the cytochrome b6f complex. At low temperatures, high light induced lumen acidification, but did not induce NPQ, leading to accumulation of reduced electron transfer intermediates, a situation likely to induce photodamage, and represents a potential target for improving the efficiency and robustness of photosynthesis. Finally, we discuss the implications of the approach for open science efforts to understand and improve crop productivity. 
    more » « less
  2. null (Ed.)
    Salinity is a widespread environmental stress that severely limits crop yield worldwide. Cerium oxide nanoparticles (nanoceria) have the unique capability of catalytically reducing levels of stress-induced reactive oxygen species (ROS) including hydroxyl radicals (˙OH) that lack enzymatic scavenging pathways. The underlying mechanisms of how nanoceria ROS scavenging augments plant tolerance to environmental stress are not well understood. Herein, we demonstrate that catalytic ˙OH scavenging by nanoceria in Arabidopsis thaliana leaves significantly improves mesophyll K + retention, a key trait associated with salinity stress tolerance. Leaves with mesophyll cells interfaced with 50 mg L −1 poly(acrylic acid) coated nanoceria (PNC) have significantly higher ( P < 0.05) carbon assimilation rates (85%), quantum efficiency of photosystem II (9%), and chlorophyll content (14%) compared to controls after being exposed to 100 mM NaCl for 3 days. PNC infiltrated leaves (PNC-leaves) under salinity stress exhibit lower ROS levels – including hydroxyl radical (41%) and its precursor hydrogen peroxide (44%) – and one fold higher ( P < 0.05) cytosolic K + dye intensity in leaf mesophyll cells relative to controls. Non-invasive microelectrode ion flux electrophysiological (MIFE) measurements indicated that PNC-leaves have about three-fold lower NaCl-induced K + efflux from leaf mesophyll cells compared to controls upon exposure to salinity stress. The ROS-activated nonselective cation channels (ROS-NSCC) in the plasma membrane of leaf mesophyll cells were identified as the main ˙OH-inducible K + efflux channels. Long term catalytic scavenging of ˙OH in leaves by PNC enhances plant photosynthetic performance under salinity stress by enabling plasma membrane channels/transporters to coordinately retain higher levels of K + in the leaf mesophyll cell cytosol. PNC augmented plant ROS scavenging provides a key tool for understanding and improving plant tolerance against abiotic stresses such as salinity. 
    more » « less
  3. Abstract Senescence vividly marks the onset of the final stages of the life of a leaf, yet the triggers and drivers of this process are still not fully understood. The hormone abscisic acid (ABA) is an important regulator of leaf senescence in model herbs, but the function of this hormone has not been widely tested in deciduous trees. Here we investigate the importance of ABA as a driver of leaf senescence in winter deciduous trees. In four diverse species we tracked leaf gas exchange, water potential, chlorophyll content, and leaf ABA levels from the end of summer until leaves were abscised or died. We found that no change in ABA levels occurred at the onset of chlorophyll decline or throughout the duration of leaf senescence. To test whether ABA could enhance leaf senescence, we girdled branches to disrupt ABA export in the phloem. Girdling increased leaf ABA levels in two of the species, and this increase triggered an accelerated rate of chlorophyll decline in these species. We conclude that an increase in ABA level may augment leaf senescence in winter deciduous species but that it is not essential for this annual process. 
    more » « less
  4. Leaves are a key forage part for livestock, and the aging of leaves affects forage biomass and quality. Preventing or delaying premature leaf senescence leads to an increase in pasture biomass accumulation and an improvement in alfalfa quality. NAC transcription factors have been reported to affect plant growth and abiotic stress responses. In this study, 48 NAC genes potentially associated with leaf senescence were identified in alfalfa under dark or salt stress conditions. A phylogenetic analysis divided MsNACs into six subgroups based on similar gene structure and conserved motif. These MsNACs were unevenly distributed in 26 alfalfa chromosomes. The results of the collinearity analysis show that all of the MsNACs were involved in gene duplication. Some cis-acting elements related to hormones and stress were screened in the 2-kb promoter regions of MsNACs. Nine of the MsNAC genes were subjected to qRT-PCR to quantify their expression and Agrobacterium-mediated transient expression to verify their functions. The results indicate that Ms.gene031485, Ms.gene032313, Ms.gene08494, and Ms.gene77666 might be key NAC genes involved in alfalfa leaf senescence. Our findings extend the understanding of the regulatory function of MsNACs in leaf senescence. 
    more » « less
  5. Recently, solar-induced chlorophyll fluorescence (SIF) is a promising tool to estimate gross primary production (GPP). Photosynthesis gradually saturates with the increasing light, but fluorescence tends to keep increasing, leading to a nonlinear SIF-GPP relationship. This nonlinearity occurs for sunlit leaves but not for shaded leaves for which photosynthesis is light-limited. However, the separation of sunlit and shaded SIF has not been systematically investigated when estimating GPP from SIF. Therefore, it is promising to develop a model for GPP estimation considering such differences. This study proposed an approach to separate the total canopy SIF emission (SIFtotal) from TROPOspheric Monitoring Instrument (TROPOMI) SIF into their sunlit and shaded components (SIFsun and SIFshade). The nonlinearity and linearity in SIF-GPP relationships for sunlit and shaded leaves were incorporated into a two-leaf hybrid model, which was fitted using flux tower data and then evaluated using leave-one-site-out crossing validation. We also elucidated the distinct SIF-GPP relationships between sunlit and shaded leaves using the Soil-Canopy-Observation of Photosynthesis and the Energy balance (SCOPE) model simulation. Compared to previously used linear (R2 = 0.68, RMSE = 2.13 gC⋅m^-2*d^-1) or hyperbolic (R2 = 0.72, RMSE = 2.01 gC⋅m^-2⋅d^-1) model based on the big-leaf assumption, our proposed two-leaf hybrid model has the best performance on GPP estimation (R2 = 0.77, RMSE = 1.79 gC⋅m^-2⋅d^-1). We also applied this two-leaf hybrid model to estimate the global GPP during the main growing season in Northern Hemisphere, which were highly correlated with several existing GPP products, with R2 ranging from 0.79 to 0.88. These results will improve our understanding of the relationship between SIF and GPP for sunlit and shaded leaves and will advance application of satellite SIF data to GPP estimation. 
    more » « less