The Haefliger–Thurston conjecture predicts that Haefliger's classifying space for$$C^r$$-foliations of codimension$$n$$whose normal bundles are trivial is$$2n$$-connected. In this paper, we confirm this conjecture for piecewise linear (PL) foliations of codimension$$2$$. Using this, we use a version of the Mather–Thurston theorem for PL homeomorphisms due to the author to derive new homological properties for PL surface homeomorphisms. In particular, we answer the question of Epstein in dimension$$2$$and prove the simplicity of the identity component of PL surface homeomorphisms.
more »
« less
KSB stability is automatic in codimension $\boldsymbol{\geq 3}$
Abstract KSB stability holds at codimension$$1$$points trivially, and it is quite well understood at codimension$$2$$points because we have a complete classification of$$2$$-dimensional slc singularities. We show that it is automatic in codimension$$3$$.
more »
« less
- PAR ID:
- 10581631
- Publisher / Repository:
- Cambridge University Press
- Date Published:
- Journal Name:
- Moduli
- Volume:
- 1
- ISSN:
- 2949-7647
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Every Thurston map$$f\colon S^2\rightarrow S^2$$on a$$2$$-sphere$$S^2$$induces a pull-back operation on Jordan curves$$\alpha \subset S^2\smallsetminus {P_f}$$, where$${P_f}$$is the postcritical set off. Here the isotopy class$$[f^{-1}(\alpha )]$$(relative to$${P_f}$$) only depends on the isotopy class$$[\alpha ]$$. We study this operation for Thurston maps with four postcritical points. In this case, a Thurston obstruction for the mapfcan be seen as a fixed point of the pull-back operation. We show that if a Thurston mapfwith a hyperbolic orbifold and four postcritical points has a Thurston obstruction, then one can ‘blow up’ suitable arcs in the underlying$$2$$-sphere and construct a new Thurston map$$\widehat f$$for which this obstruction is eliminated. We prove that no other obstruction arises and so$$\widehat f$$is realized by a rational map. In particular, this allows for the combinatorial construction of a large class of rational Thurston maps with four postcritical points. We also study the dynamics of the pull-back operation under iteration. We exhibit a subclass of our rational Thurston maps with four postcritical points for which we can give positive answer to the global curve attractor problem.more » « less
-
Abstract LetKbe an imaginary quadratic field and$$p\geq 5$$a rational prime inert inK. For a$$\mathbb {Q}$$-curveEwith complex multiplication by$$\mathcal {O}_K$$and good reduction atp, K. Rubin introduced ap-adicL-function$$\mathscr {L}_{E}$$which interpolates special values ofL-functions ofEtwisted by anticyclotomic characters ofK. In this paper, we prove a formula which links certain values of$$\mathscr {L}_{E}$$outside its defining range of interpolation with rational points onE. Arithmetic consequences includep-converse to the Gross–Zagier and Kolyvagin theorem forE. A key tool of the proof is the recent resolution of Rubin’s conjecture on the structure of local units in the anticyclotomic$${\mathbb {Z}}_p$$-extension$$\Psi _\infty $$of the unramified quadratic extension of$${\mathbb {Q}}_p$$. Along the way, we present a theory of local points over$$\Psi _\infty $$of the Lubin–Tate formal group of height$$2$$for the uniformizing parameter$$-p$$.more » « less
-
Abstract What proportion of integers$$n \leq N$$may be expressed as$$x^2 + dy^2$$for some$$d \leq \Delta $$, with$$x,y$$integers? Writing$$\Delta = (\log N)^{\log 2} 2^{\alpha \sqrt {\log \log N}}$$for some$$\alpha \in (-\infty , \infty )$$, we show that the answer is$$\Phi (\alpha ) + o(1)$$, where$$\Phi $$is the Gaussian distribution function$$\Phi (\alpha ) = \frac {1}{\sqrt {2\pi }} \int ^{\alpha }_{-\infty } e^{-x^2/2} dx$$. A consequence of this is a phase transition: Almost none of the integers$$n \leq N$$can be represented by$$x^2 + dy^2$$with$$d \leq (\log N)^{\log 2 - \varepsilon }$$, but almost all of them can be represented by$$x^2 + dy^2$$with$$d \leq (\log N)^{\log 2 + \varepsilon}\kern-1.5pt$$.more » « less
-
Abstract Given a family$$\mathcal{F}$$of bipartite graphs, theZarankiewicz number$$z(m,n,\mathcal{F})$$is the maximum number of edges in an$$m$$by$$n$$bipartite graph$$G$$that does not contain any member of$$\mathcal{F}$$as a subgraph (such$$G$$is called$$\mathcal{F}$$-free). For$$1\leq \beta \lt \alpha \lt 2$$, a family$$\mathcal{F}$$of bipartite graphs is$$(\alpha,\beta )$$-smoothif for some$$\rho \gt 0$$and every$$m\leq n$$,$$z(m,n,\mathcal{F})=\rho m n^{\alpha -1}+O(n^\beta )$$. Motivated by their work on a conjecture of Erdős and Simonovits on compactness and a classic result of Andrásfai, Erdős and Sós, Allen, Keevash, Sudakov and Verstraëte proved that for any$$(\alpha,\beta )$$-smooth family$$\mathcal{F}$$, there exists$$k_0$$such that for all odd$$k\geq k_0$$and sufficiently large$$n$$, any$$n$$-vertex$$\mathcal{F}\cup \{C_k\}$$-free graph with minimum degree at least$$\rho (\frac{2n}{5}+o(n))^{\alpha -1}$$is bipartite. In this paper, we strengthen their result by showing that for every real$$\delta \gt 0$$, there exists$$k_0$$such that for all odd$$k\geq k_0$$and sufficiently large$$n$$, any$$n$$-vertex$$\mathcal{F}\cup \{C_k\}$$-free graph with minimum degree at least$$\delta n^{\alpha -1}$$is bipartite. Furthermore, our result holds under a more relaxed notion of smoothness, which include the families$$\mathcal{F}$$consisting of the single graph$$K_{s,t}$$when$$t\gg s$$. We also prove an analogous result for$$C_{2\ell }$$-free graphs for every$$\ell \geq 2$$, which complements a result of Keevash, Sudakov and Verstraëte.more » « less
An official website of the United States government

