Motivated by the great success of classical generative models in machine learning, enthusiastic exploration of their quantum version has recently started. To depart on this journey, it is important to develop a relevant metric to evaluate the quality of quantum generative models; in the classical case, one such example is the (classical) inception score (cIS). In this paper, as a natural extension of cIS, we propose the quantum inception score (qIS) for quantum generators. Importantly, qIS relates the quality to the Holevo information of the quantum channel that classifies a given dataset. In this context, we show several properties of qIS. First, qIS is greater than or equal to the corresponding cIS, which is defined through projection measurements on the system output. Second, the difference between qIS and cIS arises from the presence of quantum coherence, as characterized by the resource theory of asymmetry. Third, when a set of entangled generators is prepared, there exists a classifying process leading to the further enhancement of qIS. Fourth, we harness the quantum fluctuation theorem to characterize the physical limitation of qIS. Finally, we apply qIS to assess the quality of the one-dimensional spin chain model as a quantum generative model, with the quantum convolutional neural network as a quantum classifier, for the phase classification problem in the quantum many-body physics. Published by the American Physical Society2024
more »
« less
This content will become publicly available on October 1, 2025
Many-body localized hidden generative models
Quantum generative models hold the promise of accelerating or improving machine learning tasks by leveraging the probabilistic nature of quantum states, but the successful optimization of these models remains a difficult challenge. To tackle this challenge, we present a new architecture for quantum generative modeling that combines insights from classical machine learning and quantum phases of matter. In particular, our model utilizes both many-body localized (MBL) dynamics and hidden units to improve the optimization of the model. We demonstrate the applicability of our model on a diverse set of classical and quantum tasks, including a toy version of MNIST handwritten digits, quantum data obtained from quantum many-body states, and nonlocal parity data. Our architecture and algorithm provide novel strategies of utilizing quantum many-body systems as learning resources and reveal a powerful connection between disorder, interaction, and learning in quantum many-body systems. Published by the American Physical Society2024
more »
« less
- Award ID(s):
- 2317134
- PAR ID:
- 10581676
- Publisher / Repository:
- Physical Review Research
- Date Published:
- Journal Name:
- Physical Review Research
- Volume:
- 6
- Issue:
- 4
- ISSN:
- 2643-1564
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Variational quantum algorithms rely on the optimization of parameterized quantum circuits in noisy settings. The commonly used back-propagation procedure in classical machine learning is not directly applicable in this setting due to the collapse of quantum states after measurements. Thus, gradient estimations constitute a significant overhead in a gradient-based optimization of such quantum circuits. This paper introduces a random coordinate descent algorithm as a practical and easy-to-implement alternative to the full gradient descent algorithm. This algorithm only requires one partial derivative at each iteration. Motivated by the behavior of measurement noise in the practical optimization of parameterized quantum circuits, this paper presents an optimization problem setting that is amenable to analysis. Under this setting, the random coordinate descent algorithm exhibits the same level of stochastic stability as the full gradient approach, making it as resilient to noise. The complexity of the random coordinate descent method is generally no worse than that of the gradient descent and can be much better for various quantum optimization problems with anisotropic Lipschitz constants. Theoretical analysis and extensive numerical experiments validate our findings. Published by the American Physical Society2024more » « less
-
We present an expression for the spectral gap, opening up new possibilities for performing and accelerating spectral calculations of quantum many-body systems. We develop and demonstrate one such possibility in the context of tensor network simulations. Our approach requires only minor modifications of the widely used simple update method and is computationally lightweight relative to other approaches. We validate it by computing spectral gaps of the 2D and 3D transverse-field Ising models and find strong agreement with previously reported perturbation theory results. Published by the American Physical Society2024more » « less
-
Convolutional neural networks (CNNs) have been employed along with variational Monte Carlo methods for finding the ground state of quantum many-body spin systems with great success. However, it remains uncertain how CNNs, with a model complexity that scales at most linearly with the number of particles, solve the “curse of dimensionality” and efficiently represent wavefunctions in exponentially large Hilbert spaces. In this work, we use methodologies from information theory, group theory and machine learning, to elucidate how CNN captures relevant physics of quantum systems. We connect CNNs to a class of restricted maximum entropy (MaxEnt) and entangled plaquette correlator product state (EP-CPS) models that approximate symmetry constrained classical correlations between subsystems. For the final part of the puzzle, inspired by similar analyses for matrix product states and tensor networks, we show that the CNNs rely on the spectrum of each subsystem's entanglement Hamiltonians as captured by the size of the convolutional filter. All put together, these allow CNNs to simulate exponential quantum wave functions using a model that scales at most linear in system size as well as provide clues into when CNNs might fail to simulate Hamiltonians. We incorporate our insights into a new training algorithm and demonstrate its improved efficiency, accuracy, and robustness. Finally, we use regression analysis to show how the CNNs solutions can be used to identify salient physical features of the system that are the most relevant to an efficient approximation. Our integrated approach can be extended to similarly analyzing other neural network architectures and quantum spin systems. Published by the American Physical Society2025more » « less
-
We simulate the dynamics of Rydberg atoms resonantly exchanging energy via two-, three-, and four-body dipole-dipole interactions in a one-dimensional array. Using simplified models of a realistic experimental system, we study the initial-state survival probability, mean level spacing, spread of entanglement, and properties of the energy eigenstates. By exploring a range of disorders and interaction strengths, we find regions in parameter space where the three- and four-body dynamics either fail to thermalize or do so slowly. The interplay between the stronger hopping and weaker field-tuned interactions gives rise to quantum many-body scar states, which play a critical role in slowing the dynamics of the three- and four-body interactions. Published by the American Physical Society2024more » « less