skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 11, 2026

Title: On the shape of air bubbles trapped in ice
Water usually contains dissolved gases, and because freezing is a purifying process these gases must be expelled for ice to form. Bubbles appear at the freezing front and are then trapped in ice, making pores. These pores come in a range of sizes from microns to millimeters and their shapes are peculiar; never spherical but elongated, and usually fore-aft asymmetric. We show that these remarkable shapes result of a delicate balance between freezing, capillarity, and mass diffusion. A nonlinear ordinary differential equation suffices to describe the bubbles, which features two nondimensional numbers representing the supersaturation and the freezing rate, and two additional parameters representing simultaneous freezing and nucleation treated as the initial condition. Our experiments provide us with a large variety of pictures of bubble shapes. We show that all of these bubbles have their rounded tip well described by an asymptotic regime of the differential equation and that most bubbles can have their full shape quantitatively matched by a full solution. This method enables the measurement of the freezing conditions of ice samples, and the design of freeze-cast porous materials. Furthermore, the equation exhibits a bifurcation that explains why some bubbles grow indefinitely and make long cylindrical “ice worms,” well known to glaciologists.  more » « less
Award ID(s):
1944844
PAR ID:
10581806
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
122
Issue:
10
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ice nucleation in the atmosphere influences cloud properties, altering precipitation and the radiative balance, ultimately regulating Earth’s climate. An accepted ice nucleation pathway, known as deposition nucleation, assumes a direct transition of water from the vapor to the ice phase, without an intermediate liquid phase. However, studies have shown that nucleation occurs through a liquid phase in porous particles with narrow cracks or surface imperfections where the condensation of liquid below water saturation can occur, questioning the validity of deposition nucleation. We show that deposition nucleation cannot explain the strongly enhanced ice nucleation efficiency of porous compared with nonporous particles at temperatures below −40 °C and the absence of ice nucleation below water saturation at −35 °C. Using classical nucleation theory (CNT) and molecular dynamics simulations (MDS), we show that a network of closely spaced pores is necessary to overcome the barrier for macroscopic ice-crystal growth from narrow cylindrical pores. In the absence of pores, CNT predicts that the nucleation barrier is insurmountable, consistent with the absence of ice formation in MDS. Our results confirm that pore condensation and freezing (PCF), i.e., a mechanism of ice formation that proceeds via liquid water condensation in pores, is a dominant pathway for atmospheric ice nucleation below water saturation. We conclude that the ice nucleation activity of particles in the cirrus regime is determined by the porosity and wettability of pores. PCF represents a mechanism by which porous particles like dust could impact cloud radiative forcing and, thus, the climate via ice cloud formation. 
    more » « less
  2. Abstract. Heterogeneous ice nucleation is thought to be the primary pathway for the formation of ice in mixed-phase clouds, with the number of active ice-nucleating particles (INPs) increasing rapidly with decreasing temperature. Here, molecular-dynamics simulations of heterogeneous ice nucleation demonstrate that the ice nucleation rate is also sensitive to pressure and that negative pressure within supercooled water shifts freezing temperatures to higher temperatures. Negative pressure, or tension, occurs naturally in water capillary bridges and pores and can also result from water agitation. Capillary bridge simulations presented in this study confirm that negative Laplace pressure within the water increases heterogeneous-freezing temperatures. The increase in freezing temperatures with negative pressure is approximately linear within the atmospherically relevant range of 1 to −1000 atm. An equation describing the slope depends on the latent heat of freezing and the molar volume difference between liquid water and ice. Results indicate that negative pressures of −500 atm, which correspond to nanometer-scale water surface curvatures, lead to a roughly 4 K increase in heterogeneous-freezing temperatures. In mixed-phase clouds, this would result in an increase of approximately 1 order of magnitude in active INP concentrations. The findings presented here indicate that any process leading to negative pressure in supercooled water may play a role in ice formation, consistent with experimental evidence of enhanced ice nucleation due to surface geometry or mechanical agitation of water droplets. This points towards the potential for dynamic processes such as contact nucleation and droplet collision or breakup to increase ice nucleation rates through pressure perturbations. 
    more » « less
  3. The heterogeneous nucleation of ice is an importantatmospheric process facilitated by a wide range of aerosols. Drop-freezingexperiments are key for the determination of the ice nucleation activity ofbiotic and abiotic ice nucleators (INs). The results of these experimentsare reported as the fraction of frozen droplets fice(T) as a functionof decreasing temperature and the corresponding cumulative freezing spectraNm(T) computed using Gabor Vali's methodology. The differential freezingspectrum nm(T) is an approximant to the underlying distribution ofheterogeneous ice nucleation temperatures Pu(T) that represents thecharacteristic freezing temperatures of all INs in the sample. However,Nm(T) can be noisy, resulting in a differential form nm(T) that is challenging to interpret. Furthermore, there is no rigorousstatistical analysis of how many droplets and dilutions are needed to obtaina well-converged nm(T) that represents the underlying distributionPu(T). Here, we present the HUB (heterogeneousunderlying-based) method and associated Python codes thatmodel (HUB-forward code) and interpret (HUB-backward code) the results ofdrop-freezing experiments. HUB-forward predicts fice(T) and Nm(T)from a proposed distribution Pu(T) of IN temperatures, allowing itsusers to test hypotheses regarding the role of subpopulations of nuclei infreezing spectra and providing a guide for a more efficient collection offreezing data. HUB-backward uses a stochastic optimization method to computenm(T) from either Nm(T) or fice(T). The differential spectrumcomputed with HUB-backward is an analytical function that can be used toreveal and characterize the underlying number of IN subpopulations ofcomplex biological samples (e.g., ice-nucleating bacteria, fungi, pollen)and to quantify the dependence of these subpopulations on environmentalvariables. By delivering a way to compute the differential spectrum fromdrop-freezing data, and vice versa, the HUB-forward and HUB-backward codesprovide a hub to connect experiments and interpretative physical quantitiesthat can be analyzed with kinetic models and nucleation theory. 
    more » « less
  4. Abstract Flow through partially frozen pores in granular media containing ice or gas hydrate plays an essential role in diverse phenomena including methane migration and frost heave. As freezing progresses, the frozen phase grows in the pore space and constricts flow paths so that the permeability decreases. Previous works have measured the relationship between permeability and volumetric fraction of the frozen phase, and various correlations have been proposed to predict permeability change in hydrology and the oil industry. However, predictions from different formulae can differ by orders of magnitude, causing great uncertainty in modeling results. We present a floating random walk method to approximate the porous flow field and estimate the effective permeability in isotropic granular media with specified particle size distributions, without solving for the entire flow field in the pore space. In packed spherical particles, the method compares favorably with the Kozeny‐Carman formula. We further extend this method with a probabilistic interpretation of the volumetric fraction of the frozen phase, simulate the effect of freezing in irregular pores, and predict the evolution of permeability. Employing no adjustable parameters, our results can provide insight into the coupling between phase transitions and permeability change, which plays important roles in hydrate formation and dissociation, as well as in the thawing and freezing of permafrost and ice‐bed coupling beneath glaciers. 
    more » « less
  5. Abstract. From extracellular freezing to cloud glaciation, the crystallization of water is ubiquitous and shapes life as we know it. Efficient biological ice nucleators (INs) are crucial for organism survival in cold environments and, when aerosolized, serve as a significant source of atmospheric ice nuclei. Several lichen species have been identified as potent INs capable of inducing freezing at high subzero temperatures. Despite their importance, the abundance and diversity of lichen INs are still not well understood. Here, we investigate ice nucleation activity in the cyanolichen-forming genus Peltigera from across a range of ecosystems in the Arctic, the northwestern United States, and Central and South America. We find strong IN activity in all tested Peltigera species, with ice nucleation temperatures above −12 °C and 35 % of the samples initiating freezing at temperatures at or above −6.2 °C. The Peltigera INs in aqueous extract appear to be resistant to freeze–thaw cycles, suggesting that they can survive dispersal through the atmosphere and thereby potentially influence precipitation patterns. An axenic fungal culture termed L01-tf-B03, from the lichen Peltigera britannica JNU22, displays an ice nucleation temperature of −5.6 °C at 1 mg mL−1 and retains remarkably high IN activity at concentrations as low as 0.1 ng mL−1. Our analysis suggests that the INs released from this fungus in culture are 1000 times more potent than the most active bacterial INs from Pseudomonas syringae. The global distribution of Peltigera lichens, in combination with the IN activity, emphasizes their potential to act as powerful ice-nucleating agents in the atmosphere. 
    more » « less