Abstract BackgroundAnalyzing single-cell RNA sequencing (scRNAseq) data plays an important role in understanding the intrinsic and extrinsic cellular processes in biological and biomedical research. One significant effort in this area is the identification of cell types. With the availability of a huge amount of single cell sequencing data and discovering more and more cell types, classifying cells into known cell types has become a priority nowadays. Several methods have been introduced to classify cells utilizing gene expression data. However, incorporating biological gene interaction networks has been proved valuable in cell classification procedures. ResultsIn this study, we propose a multimodal end-to-end deep learning model, named sigGCN, for cell classification that combines a graph convolutional network (GCN) and a neural network to exploit gene interaction networks. We used standard classification metrics to evaluate the performance of the proposed method on the within-dataset classification and the cross-dataset classification. We compared the performance of the proposed method with those of the existing cell classification tools and traditional machine learning classification methods. ConclusionsResults indicate that the proposed method outperforms other commonly used methods in terms of classification accuracy and F1 scores. This study shows that the integration of prior knowledge about gene interactions with gene expressions using GCN methodologies can extract effective features improving the performance of cell classification. 
                        more » 
                        « less   
                    This content will become publicly available on December 1, 2025
                            
                            Leveraging gene correlations in single cell transcriptomic data
                        
                    
    
            Abstract BackgroundMany approaches have been developed to overcome technical noise in single cell RNA-sequencing (scRNAseq). As researchers dig deeper into data—looking for rare cell types, subtleties of cell states, and details of gene regulatory networks—there is a growing need for algorithms with controllable accuracy and fewer ad hoc parameters and thresholds. Impeding this goal is the fact that an appropriate null distribution for scRNAseq cannot simply be extracted from data in which ground truth about biological variation is unknown (i.e., usually). ResultsWe approach this problem analytically, assuming that scRNAseq data reflect only cell heterogeneity (what we seek to characterize), transcriptional noise (temporal fluctuations randomly distributed across cells), and sampling error (i.e., Poisson noise). We analyze scRNAseq data without normalization—a step that skews distributions, particularly for sparse data—and calculatepvalues associated with key statistics. We develop an improved method for selecting features for cell clustering and identifying gene–gene correlations, both positive and negative. Using simulated data, we show that this method, which we call BigSur (Basic Informatics and Gene Statistics from Unnormalized Reads), captures even weak yet significant correlation structures in scRNAseq data. Applying BigSur to data from a clonal human melanoma cell line, we identify thousands of correlations that, when clustered without supervision into gene communities, align with known cellular components and biological processes, and highlight potentially novel cell biological relationships. ConclusionsNew insights into functionally relevant gene regulatory networks can be obtained using a statistically grounded approach to the identification of gene–gene correlations. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1763272
- PAR ID:
- 10581865
- Publisher / Repository:
- BMC Bioinformatics
- Date Published:
- Journal Name:
- BMC Bioinformatics
- Volume:
- 25
- Issue:
- 1
- ISSN:
- 1471-2105
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract MotivationGene regulatory networks (GRNs) in a cell provide the tight feedback needed to synchronize cell actions. However, genes in a cell also take input from, and provide signals to other neighboring cells. These cell–cell interactions (CCIs) and the GRNs deeply influence each other. Many computational methods have been developed for GRN inference in cells. More recently, methods were proposed to infer CCIs using single cell gene expression data with or without cell spatial location information. However, in reality, the two processes do not exist in isolation and are subject to spatial constraints. Despite this rationale, no methods currently exist to infer GRNs and CCIs using the same model. ResultsWe propose CLARIFY, a tool that takes GRNs as input, uses them and spatially resolved gene expression data to infer CCIs, while simultaneously outputting refined cell-specific GRNs. CLARIFY uses a novel multi-level graph autoencoder, which mimics cellular networks at a higher level and cell-specific GRNs at a deeper level. We applied CLARIFY to two real spatial transcriptomic datasets, one using seqFISH and the other using MERFISH, and also tested on simulated datasets from scMultiSim. We compared the quality of predicted GRNs and CCIs with state-of-the-art baseline methods that inferred either only GRNs or only CCIs. The results show that CLARIFY consistently outperforms the baseline in terms of commonly used evaluation metrics. Our results point to the importance of co-inference of CCIs and GRNs and to the use of layered graph neural networks as an inference tool for biological networks. Availability and implementationThe source code and data is available at https://github.com/MihirBafna/CLARIFY.more » « less
- 
            Inferring gene regulatory networks (GRNs) from single-cell RNA-seq (scRNA-seq) data is an important computational question to find regulatory mechanisms involved in fundamental cellular processes. Although many computational methods have been designed to predict GRNs from scRNA-seq data, they usually have high false positive rates and none infer GRNs by directly using the paired datasets of case-versus-control experiments. Here we present a novel deep-learning-based method, named scTIGER, for GRN detection by using the co-differential relationships of gene expression profiles in paired scRNA-seq datasets. scTIGER employs cell-type-based pseudotiming, an attention-based convolutional neural network method and permutation-based significance testing for inferring GRNs among gene modules. As state-of-the-art applications, we first applied scTIGER to scRNA-seq datasets of prostate cancer cells, and successfully identified the dynamic regulatory networks of AR, ERG, PTEN and ATF3 for same-cell type between prostatic cancerous and normal conditions, and two-cell types within the prostatic cancerous environment. We then applied scTIGER to scRNA-seq data from neurons with and without fear memory and detected specific regulatory networks for BDNF, CREB1 and MAPK4. Additionally, scTIGER demonstrates robustness against high levels of dropout noise in scRNA-seq data.more » « less
- 
            Abstract BackgroundV0v spinal interneurons are highly conserved, glutamatergic, commissural neurons that function in locomotor circuits. We have previously shown that Evx1 and Evx2 are required to specify the neurotransmitter phenotype of these cells. However, we still know very little about the gene regulatory networks that act downstream of these transcription factors in V0v cells. MethodsTo identify candidate members of V0v gene regulatory networks, we FAC-sorted wild-type andevx1;evx2double mutant zebrafish V0v spinal interneurons and expression-profiled them using microarrays and single cell RNA-seq. We also used in situ hybridization to compare expression of a subset of candidate genes inevx1;evx2double mutants and wild-type siblings. ResultsOur data reveal two molecularly distinct subtypes of zebrafish V0v spinal interneurons at 48 h and suggest that, by this stage of development,evx1;evx2double mutant cells transfate into either inhibitory spinal interneurons, or motoneurons. Our results also identify 25 transcriptional regulator genes that require Evx1/2 for their expression in V0v interneurons, plus a further 11 transcriptional regulator genes that are repressed in V0v interneurons by Evx1/2. Two of the latter genes arehmx2andhmx3a. Intriguingly, we show that Hmx2/3a, repress dI2 interneuron expression ofskor1aandnefma, two genes that require Evx1/2 for their expression in V0v interneurons. This suggests that Evx1/2 might regulateskor1aandnefmaexpression in V0v interneurons by repressing Hmx2/3a expression. ConclusionsThis study identifies two molecularly distinct subsets of zebrafish V0v spinal interneurons, as well as multiple transcriptional regulators that are strong candidates for acting downstream of Evx1/2 to specify the essential functional characteristics of these cells. Our data further suggest that in the absence of both Evx1 and Evx2, V0v spinal interneurons initially change their neurotransmitter phenotypes from excitatory to inhibitory and then, later, start to express markers of distinct types of inhibitory spinal interneurons, or motoneurons. Taken together, our findings significantly increase our knowledge of V0v and spinal development and move us closer towards the essential goal of identifying the complete gene regulatory networks that specify this crucial cell type.more » « less
- 
            Abstract AimsDissecting complex interactions among transcription factors (TFs), microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are central for understanding heart development and function. Although computational approaches and platforms have been described to infer relationships among regulatory factors and genes, current approaches do not adequately account for how highly diverse, interacting regulators that include noncoding RNAs (ncRNAs) control cardiac gene expression dynamics over time. MethodsTo overcome this limitation, we devised an integrated framework, cardiac gene regulatory modeling (CGRM) that integrates LogicTRN and regulatory component analysis bioinformatics modeling platforms to infer complex regulatory mechanisms. We then used CGRM to identify and compare the TF-ncRNA gene regulatory networks that govern early- and late-stage cardiomyocytes (CMs) generated by in vitro differentiation of human pluripotent stem cells (hPSC) and ventricular and atrial CMs isolated during in vivo human cardiac development. ResultsComparisons of in vitro versus in vivo derived CMs revealed conserved regulatory networks among TFs and ncRNAs in early cells that significantly diverged in late staged cells. We report that cardiac genes (“heart targets”) expressed in early-stage hPSC-CMs are primarily regulated by MESP1, miR-1, miR-23, lncRNAs NEAT1 and MALAT1, while GATA6, HAND2, miR-200c, NEAT1 and MALAT1 are critical for late hPSC-CMs. The inferred TF-miRNA-lncRNA networks regulating heart development and contraction were similar among early-stage CMs, among individual hPSC-CM datasets and between in vitro and in vivo samples. However, genes related to apoptosis, cell cycle and proliferation, and transmembrane transport showed a high degree of divergence between in vitro and in vivo derived late-stage CMs. Overall, late-, but not early-stage CMs diverged greatly in the expression of “heart target” transcripts and their regulatory mechanisms. ConclusionsIn conclusion, we find that hPSC-CMs are regulated in a cell autonomous manner during early development that diverges significantly as a function of time when compared to in vivo derived CMs. These findings demonstrate the feasibility of using CGRM to reveal dynamic and complex transcriptional and posttranscriptional regulatory interactions that underlie cell directed versus environment-dependent CM development. These results with in vitro versus in vivo derived CMs thus establish this approach for detailed analyses of heart disease and for the analysis of cell regulatory systems in other biomedical fields.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
