skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Gravity Wave Activity During the 2024 Sudden Stratospheric Warmings Observed by Atmospheric Waves Experiment (AWE)
Abstract The National Aeronautics and Space Administration (NASA) Atmospheric Waves Experiment (AWE) instrument, launched in November 2023, provides direct observation of small‐scale (30–300 km) gravity waves (GWs) in the mesosphere on a global scale. This work examined changes in GW activity observed by AWE during two major Sudden Stratospheric Warmings (SSWs) in the 2023 and 2024 winter season. Northern Hemisphere (NH) midlatitude GW activity during these events shared similarities. Variations in mesospheric GW activity showed an evident correlation with the magnitude of zonal wind in the upper stratosphere. NH midlatitude GW activity at 87 km was reduced following the onset of SSWs, likely caused by wind filtering and wave saturation. The upward propagation of GWs was suppressed when the zonal wind reversed from eastward to westward in the upper stratosphere. In regions where the zonal wind weakened but remained eastward, the weakened GWs could be due to their refraction to shorter vertical wavelengths.  more » « less
Award ID(s):
2327914
PAR ID:
10581942
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
52
Issue:
7
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract It is well known that stratospheric sudden warmings (SSWs) are a result of the interaction between planetary waves (PWs) and the stratospheric polar vortex. SSWs occur when breaking PWs slow down or even reverse this zonal wind jet and induce a sinking motion that adiabatically warms the stratosphere and lowers the stratopause. In this paper we characterize this downward progression of stratospheric temperature anomalies using 18 years (2003–2020) of Sounding of the Atmosphere using Broadband Radiometry (SABER) observations. SABER temperatures, derived zonal winds, PW activity and gravity wave (GW) activity during January and February of each year indicate a high‐degree of year‐to‐year variability. From 11 stratospheric warming events (9 major and 2 minor events), the descent rate of the stratopause altitude varies from 0.5 to 2 km/day and the lowest altitude the stratopause descends to varies from <20 to ∼50 km (i.e., no descent). A composite analysis of temperature and squared GW amplitude anomalies indicate that the downward descent of temperature anomalies from 50 to ∼25 km lags the downward progression of increased GW activity. This increased GW activity coincides with the weakening and reversal of the westward zonal winds in agreement with previous studies. Our study suggests that although PWs drive the onset of SSWs at 30 km, GWs also play a role in contributing to the descent of temperature anomalies from the stratopause to the middle and lower stratosphere. 
    more » « less
  2. Abstract Mesopause‐region (87 km) gravity waves (GWs) generated by tropical convection are investigated within the four longitude sectors encompassing Africa, the Indian Ocean, the Intertropical Convergence Zone, and South America during the Dec 2023–Feb 2024 Southern Hemisphere monsoon season. Variances () in the OH Q‐line emission measured by the Atmospheric Waves Experiment (AWE) capture GW activity, and precipitation rates (PR) from the Global Precipitation Measurement (GPM) Mission identify regions of convective activity. The zonal component of GWs comprising the between 10S‐10N primarily propagate eastward. The distributions are latitudinally shifted and more confined in local solar time (LST) compared with those of PR. Mesospheric winds (including tides) appear to induce the latitude‐longitude‐LST variability seen in through critical‐level filtering and Doppler‐shifting of the GWs. These new insights into the variability of the GW spectrum entering the ionosphere‐thermosphere system further our understanding of the dynamical connections between tropospheric and space weather. 
    more » « less
  3. This paper presents a study of the global medium‐scale (scales620 km) gravity wave (GW) activity (in terms of zonal wind variance) and its seasonal, local time, and longitudinal variations by employing the enhanced‐resolution (50 km) whole atmosphere model (WAMT254) and space‐based observations for geomagnetically quiet conditions. It is found that the GW hotspots produced by WAMT254 in the troposphere and stratosphere agree well with previously well‐studied orographic and nonorographic sources. In the ionosphere‐thermosphere (IT) region, GWs spread out forming latitudinal band‐like hotspots. During solstices, a primary maximum in GW activity is observed in WAMT254 and GOCE over winter mid‐high latitudes, likely associated with higher‐order waves with primary sources in polar night jet, fronts, and polar vortex. During all the seasons, the enhancement of GWs around the geomagnetic poles as observed by GOCE (at 250 km) is well captured by simulations. WAMT254 GWs in the IT region also show dependence on local time due to their interaction with migrating tides leading to diurnal and semidiurnal variations. The GWs are more likely to propagate up from the MLT region during westward/weakly eastward phase of thermospheric tides, signifying the dominance of eastward GW momentum flux in the MLT. Additionally, as a novel finding, a wavenumber‐4 signature in GW activity is predicted by WAMT254 between 6 and 12 local times in the tropics at 250 km, which propagates eastward with local time. This behavior is likely associated with the modulation of GWs by wave‐4 signal of nonmigrating tides in the lower thermospheric zonal winds. 
    more » « less
  4. Abstract Oblique propagation of gravity waves (GWs) refers to the latitudinal propagation (or vertical propagation away from their source) from the low‐latitude troposphere to the polar mesosphere. This propagation is not included in current gravity wave parameterization schemes, but may be an important component of the global dynamical structure. Previous studies have revealed a high correlation between observations of GW pseudomomentum flux (GWMF) from monsoon convection and Polar Mesospheric Clouds (PMCs) in the northern hemisphere. In this work, we report on data and model analysis of the effects of stratospheric sudden warmings (SSWs) in the northern hemisphere, on the oblique propagation of GWs from the southern hemisphere tropics, which in turn influence PMCs in the southern summer mesosphere. In response to SSWs, the propagation of GWs at the midlatitude winter hemisphere is enhanced. This enhancement appears to be slanted toward the equator with increasing altitude and follows the stratospheric eastward jet. The oblique propagation of GWs from the southern monsoon regions tends to start at higher altitudes with a sharper poleward slanted structure toward the summer mesosphere. The correlation between PMCs in the summer southern hemisphere and the zonal GWMF from 50°N to 50°S exhibits a pattern of high‐correlation coefficients that connects the winter stratosphere with the summer mesosphere, indicating the influence of Interhemispheric Coupling mechanism. Temperature and wind anomalies suggest that the dynamics in the winter hemisphere can influence the equatorial region, which in turn, can influence the oblique propagation of monsoon GWs. 
    more » « less
  5. Abstract We provide evidence that midlatitude postsunrise traveling ionospheric disturbances (TIDs) are comprised of electrified waves with an eastward propagation component. The post‐sunrise gravity wave (GW) wind‐induced dynamo action effectively generated periodic meridional polarization electric fields (PEFs), facilitating TID zonal propagation in a similar fashion as GW‐driven neutral perturbations. A combination of near‐simultaneous eastward and upward observations using the Millstone Hill incoherent scatter radar along with 2‐dimensional total electron content maps allowed resolution of TID vertical and horizontal propagation as well as zonal ion drifts(meridional PEFs). In multiple observations,oscillated in the early morning during periods when TIDs exhibited downward phase progression, 30–60 min period,140 m/s eastward speed, and 70 km vertical wavelength. Inside these TIDs, multiple flow vortexes occurred in a vertical‐zonal plane spanning the ionospheric topside and bottomside. Subsequently, PEFs weakened after a few hours as TID horizontal wavefronts rotated clockwise. 
    more » « less