The high tolerance and stability of triple halide perovskite solar cells is demonstrated in practical space conditions at high irradiation levels. The solar cells were irradiated for a range of proton energies (75 keV, 300 keV, and 1 MeV) and fluences (up to 4 × 1014 p/cm2). The fluences of the energy proton irradiations were varied to induce the same amount of vacancies in the absorber layer due to non-ionizing nuclear energy loss (predominant at <300 keV) and electron ionization loss (predominant at >300 keV). While proton irradiation of the solar cells initially resulted in degradation of the photovoltaic parameters, self-healing was observed after two months where the performance of the devices was shown to return to their pristine operation levels. Their ability to recover upon radiation exposure supports the practical potential of perovskite solar cells for next-generation space missions.
more »
« less
This content will become publicly available on January 1, 2026
Elucidating early proton irradiation effects in metal halide perovskites via photoluminescence spectroscopy
Metal halide perovskite (MHP) solar cells are promising aerospace power sources given their potential as inexpensive, lightweight, and resilient solar electricity generators. Herein, the intrinsic radiation tolerance of unencapsulated methylammonium lead iodide/chloride (CH3NH3PbI3-xClx) films was isolated. Spatially resolved photoluminescence (PL) spectroscopy and confocal microscopy revealed the fundamental defect physics through optical changes as films were irradiated with 4.5 MeV neutrons and 20 keV protons at fluences between 5×1010 and 1×1016 p+/cm2. As proton radiation increased beyond 1×1013 p+/cm2, defects formed in the film, causing both a decrease in photoluminescence intensity and a 30% increase in surface darkening. All proton irradiated films additionally exhibited continuous increase of energy bandgaps and decreasing charge recombination lifetimes with increasing proton fluences. These optical changes in the absorber layer precede performance declines detectable in standard current-voltage measurements of complete solar cell devices and therefore have the potential of serving as early indicators of radiation tolerance.
more »
« less
- PAR ID:
- 10581949
- Publisher / Repository:
- Elsevier Inc.
- Date Published:
- Journal Name:
- iScience
- Volume:
- 28
- Issue:
- 1
- ISSN:
- 2589-0042
- Page Range / eLocation ID:
- 111586
- Subject(s) / Keyword(s):
- ion beam ion implantation perovskites solar cells
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Films of α-Ga2O3 (Sn) grown by Halide Vapor Phase Epitaxy (HVPE) on sapphire with starting net donor densities in the range 5×1015- 8.4×1019 cm-3 were irradiated at room temperature with 1.1 MeV protons to fluences from 1013 -1016 cm-2. For the lowest doped samples, the carrier removal rate was ~35 cm-1 at 1014 cm-2 and ~1.3 cm-1 for 1015 cm-2 proton fluence. The observed removal rate could be accounted for by the introduction of deep acceptors with optical ionization energies of 2 eV, 2.8 eV and 3.1 eV. For doped samples doped at 4x1018 cm-3, the initial electron removal rate was 5×103 cm-1 for 1015 cm-2 proton fluence and ~300 cm-1 for 1016 cm-2 proton fluence. The same deep acceptors were observed in photocapacitance spectra, but their introduction rate was orders of magnitude lower than the carrier removal rate. For the heaviest doped samples, an electron removal rate could be measured only after irradiation with the highest proton fluence of 1016 cm-2 and was close to that measured for the 4×1018 cm-3 sample after exposure to the same fluence. Possible reasons for the observed behavior are discussed and radiation tolerances of lightly doped α-Ga2O3 films is higher than for similarly doped β-Ga2O3 layers.more » « less
-
Irvine, John (Ed.)Abstract Here, the radiation hardness of metal halide perovskite solar cells exposed to space conditions versus the effects of environmental degradation are assessed. The relative response of the constituent layers of the architecture to radiation is analyzed, revealing a general resilience of the structure when assessed across varying proton energy levels and fluences. However, despite the tolerance of the structure to irradiation, sensitivity to environmental degradation is observed during the transit of the device between the radiation and characterization facilities. Experimental evidence suggests the NiOx/perovskite interface is particularly sensitive to the effects of humidity and/or temperature exposure, while the irradiation of the devices appears to induce thermally activated annealing: improving the solar cells upon radiation exposure.more » « less
-
In this contribution, we use heavy ion irradiation and photoluminescence (PL) spectroscopy to demonstrate that defects can be used to tailor the optical properties of two-dimensional molybdenum disulfide (MoS 2 ). Sonicated MoS 2 flakes were deposited onto Si/SiO 2 substrate and subjected to 3 MeV Au 2+ ion irradiation at room temperature to fluences ranging from 1 × 10 12 to 1 × 10 16 cm −2 . We demonstrate that irradiation-induced defects can control optical excitations in the inner core shell of MoS 2 by binding A 1s - and B 1s -excitons, and correlate the exciton peaks to the specific defects introduced with irradiation. The systematic increase of ion fluence produced different defect densities in MoS 2 , which were estimated using B/A exciton ratios and progressively increased with ion fluence. We show that up to the fluences of 1 × 10 14 cm −2 , the MoS 2 lattice remains crystalline and defect densities can be controlled, whereas at higher fluences (≥1 × 10 15 cm −2 ), the large number of introduced defects distorts the excitonic structure of the material. In addition to controlling excitons, defects were used to split bound and free trions, and we demonstrate that at higher fluences (1 × 10 15 cm −2 ), both free and bound trions can be observed in the same PL spectrum. Most importantly, the lifetimes of these states exceed trion and exciton lifetimes in pristine MoS 2 , and PL spectra of irradiated MoS 2 remains unchanged weeks after irradiation experiments. Thus, this work demonstrated the feasibility of engineering novel optical behaviors in low-dimensional materials using heavy ion irradiation. The insights gained from this study will aid in understanding the many-body interactions in low-dimensional materials and may ultimately be used to develop novel materials for optoelectronic applications.more » « less
-
Abstract 17 MeV proton irradiation at fluences from 3–7 × 1013cm−2of vertical geometry NiO/β-Ga2O3heterojunction rectifiers produced carrier removal rates in the range 120–150 cm−1in the drift region. The forward current density decreased by up to 2 orders of magnitude for the highest fluence, while the reverse leakage current increased by a factor of ∼20. Low-temperature annealing methods are of interest for mitigating radiation damage in such devices where thermal annealing is not feasible at the temperatures needed to remove defects. While thermal annealing has previously been shown to produce a limited recovery of the damage under these conditions, athermal annealing by minority carrier injection from NiO into the Ga2O3has not previously been attempted. Forward bias annealing produced an increase in forward current and a partial recovery of the proton-induced damage. Since the minority carrier diffusion length is 150–200 nm in proton irradiated Ga2O3, recombination-enhanced annealing of point defects cannot be the mechanism for this recovery, and we suggest that electron wind force annealing occurs.more » « less
An official website of the United States government
