skip to main content


This content will become publicly available on August 12, 2025

Title: Radiation versus environmental degradation in unencapsulated metal halide perovskite solar cells
Abstract

Here, the radiation hardness of metal halide perovskite solar cells exposed to space conditions versus the effects of environmental degradation are assessed. The relative response of the constituent layers of the architecture to radiation is analyzed, revealing a general resilience of the structure when assessed across varying proton energy levels and fluences. However, despite the tolerance of the structure to irradiation, sensitivity to environmental degradation is observed during the transit of the device between the radiation and characterization facilities. Experimental evidence suggests the NiOx/perovskite interface is particularly sensitive to the effects of humidity and/or temperature exposure, while the irradiation of the devices appears to induce thermally activated annealing: improving the solar cells upon radiation exposure.

 
more » « less
Award ID(s):
2210722
PAR ID:
10539029
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Editor(s):
Irvine, John
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Journal of Physics: Energy
Volume:
6
Issue:
4
ISSN:
2515-7655
Page Range / eLocation ID:
045001
Subject(s) / Keyword(s):
metal halide perovskites, space photovoltaics, radiation tolerance
Format(s):
Medium: X Size: 1.5MB Other: pdf
Size(s):
1.5MB
Sponsoring Org:
National Science Foundation
More Like this
  1. The high tolerance and stability of triple halide perovskite solar cells is demonstrated in practical space conditions at high irradiation levels. The solar cells were irradiated for a range of proton energies (75 keV, 300 keV, and 1 MeV) and fluences (up to 4 × 1014 p/cm2). The fluences of the energy proton irradiations were varied to induce the same amount of vacancies in the absorber layer due to non-ionizing nuclear energy loss (predominant at <300 keV) and electron ionization loss (predominant at >300 keV). While proton irradiation of the solar cells initially resulted in degradation of the photovoltaic parameters, self-healing was observed after two months where the performance of the devices was shown to return to their pristine operation levels. Their ability to recover upon radiation exposure supports the practical potential of perovskite solar cells for next-generation space missions.

     
    more » « less
  2. Abstract

    Methylammonium lead halide perovskite‐based solar cells have demonstrated efficiencies as high as 24.2 %, highlighting their potential as inexpensive and solution‐processable alternatives to silicon solar cell technologies. Poor stability towards moisture, ultraviolet irradiation, heat, and a bias voltage of the perovskite layer and its various device interfaces limits the commercial feasibility of this material for outdoor applications. Herein, we investigate the role of hydrogen bonding interactions induced when metal halide perovskite crystals are crosslinked with alkyl or π‐conjugated boronic acid small molecules (‐B(OH)2). The crosslinked perovskite crystals are investigated under continuous light irradiation and moisture exposure. These studies demonstrate that the origin of the interaction between the alkyl or π‐conjugated crosslinking molecules is due to hydrogen bonding between the ‐B(OH)2terminal group of the crosslinker and the I of the [PbI6]4−octahedra of the perovskite layer. Also, this interaction influences the stability of the perovskite layer towards moisture and ultraviolet light irradiation. Morphology and structural analyses, as well as IR studies as a function of aging under both dark and light conditions show that π‐conjugated boronic acid molecules are more effective crosslinkers of the perovskite crystals than their alkyl counterparts thus imparting better stability towards light and moisture degradation.

     
    more » « less
  3. Abstract

    Methylammonium lead halide perovskite‐based solar cells have demonstrated efficiencies as high as 24.2 %, highlighting their potential as inexpensive and solution‐processable alternatives to silicon solar cell technologies. Poor stability towards moisture, ultraviolet irradiation, heat, and a bias voltage of the perovskite layer and its various device interfaces limits the commercial feasibility of this material for outdoor applications. Herein, we investigate the role of hydrogen bonding interactions induced when metal halide perovskite crystals are crosslinked with alkyl or π‐conjugated boronic acid small molecules (‐B(OH)2). The crosslinked perovskite crystals are investigated under continuous light irradiation and moisture exposure. These studies demonstrate that the origin of the interaction between the alkyl or π‐conjugated crosslinking molecules is due to hydrogen bonding between the ‐B(OH)2terminal group of the crosslinker and the I of the [PbI6]4−octahedra of the perovskite layer. Also, this interaction influences the stability of the perovskite layer towards moisture and ultraviolet light irradiation. Morphology and structural analyses, as well as IR studies as a function of aging under both dark and light conditions show that π‐conjugated boronic acid molecules are more effective crosslinkers of the perovskite crystals than their alkyl counterparts thus imparting better stability towards light and moisture degradation.

     
    more » « less
  4. Abstract

    The hole transport layer (HTL) is one of the key components in planar perovskite solar cells. This study reports a new kind of HTL fabricated using atomic layer deposition (ALD). By alloying TiO2with IrOx, it is demonstrated that TiO2, a well‐known electron‐selective contact and electron transport layer in photovoltaic devices, can behave as an HTL with an appropriately high work function. Perovskite Cs0.17FA0.83Pb(I0.83Br0.17)3solar cells including this new hole transport material achieve a power conversion efficiency of 15.8% under AM 1.5G simulated solar irradiation compared to a 14.3% efficiency for otherwise‐identical devices incorporating a more standard NiO HTL layer. These results suggest the promise of transition metal oxide alloys synthesized by ALD as hole contact materials for optoelectronic devices, including advanced photovoltaics.

     
    more » « less
  5. Abstract

    Tailoring the doping of semiconductors in heterojunction solar cells shows tremendous success in enhancing the performance of many types of inorganic solar cells, while it is found challenging in perovskite solar cells because of the difficulty in doping perovskites in a controllable way. Here, a small molecule of 4,4′,4″,4″′‐(pyrazine‐2,3,5,6‐tetrayl) tetrakis (N,N‐bis(4‐methoxyphenyl) aniline) (PT‐TPA) which can effectively p‐dope the surface of FAxMA1−xPbI3(FA: HC(NH2)2; MA: CH3NH3) perovskite films is reported. The intermolecular charge transfer property of PT‐TPA forms a stabilized resonance structure to accept electrons from perovskites. The doping effect increases perovskite dark conductivity and carrier concentration by up to 4737 times. Computation shows that electrons in the first two layers of octahedral cages in perovskites are transferred to PT‐TPA. After applying PT‐TPA into perovskite solar cells, the doping‐induced band bending in perovskite effectively facilitates hole extraction to hole transport layer and expels electrons toward cathode side, which reduces the charge recombination there. The optimized devices demonstrate an increased photovoltage from 1.12 to 1.17 V and an efficiency of 23.4% from photocurrent scanning with a stabilized efficiency of 22.9%. The findings demonstrate that molecular doping is an effective route to control the interfacial charge recombination in perovskite solar cells which is in complimentary to broadly applied defect passivation techniques.

     
    more » « less