Abstract Juveniles are typically less resistant (more susceptible) to infectious disease than adults, and this difference in susceptibility can help fuel the spread of pathogens in age‐structured populations. However, evolutionary explanations for this variation in resistance across age remain to be tested.One hypothesis is that natural selection has optimized resistance to peak at ages where disease exposure is greatest. A central assumption of this hypothesis is that hosts have the capacity to evolve resistance independently at different ages. This would mean that host populations have (a) standing genetic variation in resistance at both juvenile and adult stages, and (b) that this variation is not strongly correlated between age classes so that selection acting at one age does not produce a correlated response at the other age.Here we evaluated the capacity of three wild plant species (Silene latifolia,S. vulgarisandDianthus pavonius) to evolve resistance to their anther‐smut pathogens (Microbotryumfungi), independently at different ages. The pathogen is pollinator transmitted, and thus exposure risk is considered to be highest at the adult flowering stage.Within each species we grew families to different ages, inoculated individuals with anther smut, and evaluated the effects of age, family and their interaction on infection.In two of the plant species,S. latifoliaandD. pavonius, resistance to smut at the juvenile stage was not correlated with resistance to smut at the adult stage. In all three species, we show there are significant age × family interaction effects, indicating that age specificity of resistance varies among the plant families.Synthesis. These results indicate that different mechanisms likely underlie resistance at juvenile and adult stages and support the hypothesis that resistance can evolve independently in response to differing selection pressures as hosts age. Taken together our results provide new insight into the structure of genetic variation in age‐dependent resistance in three well‐studied wild host–pathogen systems.
more »
« less
Disease resistance is more costly at younger ages: An explanation for the maintenance of juvenile susceptibility in a wild plant
High juvenile susceptibility drives infectious disease epidemics across kingdoms, yet the evolutionary mechanisms that maintain this susceptibility are unclear. We tested the hypothesis that juvenile susceptibility is maintained by high costs of resistance by quantifying the genetic correlation between host fitness and age-specific innate resistance to a fungal pathogen in a wild plant. We separately measured the resistance of 45 genetic families of the wild plant,Silene latifolia,to its endemic fungal pathogen,Microbotryum lychnidis-dioicae,at four ages in a controlled inoculation experiment. We then grew these same families in a field common garden and tracked survival and fecundity over a 2-y period and quantified the correlation between age-specific resistance and fitness in the field. We found significant fitness costs associated with disease resistance at juvenile but not at adult host stages. We then used an age-structured compartmental model to show that the magnitude of these costs is sufficient to prevent the evolution of higher juvenile resistance in models, allowing the disease to persist. Taken together, our results show that costs of resistance vary across host lifespan, providing an evolutionary explanation for the maintenance of juvenile susceptibility.
more »
« less
- Award ID(s):
- 1936334
- PAR ID:
- 10581979
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 122
- Issue:
- 14
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract While the negative effects that pathogens have on their hosts are well-documented in humans and agricultural systems, direct evidence of pathogen-driven impacts in wild host populations is scarce and mixed. Here, to determine how the strength of pathogen-imposed selection depends on spatial structure, we analyze growth rates across approximately 4000 host populations of a perennial plant through time coupled with data on pathogen presence-absence. We find that infection decreases growth more in the isolated than well-connected host populations. Our inoculation study reveals isolated populations to be highly susceptible to disease while connected host populations support the highest levels of resistance diversity, regardless of their disease history. A spatial eco-evolutionary model predicts that non-linearity in the costs to resistance may be critical in determining this pattern. Overall, evolutionary feedbacks define the ecological impacts of disease in spatially structured systems with host gene flow being more important than disease history in determining the outcome.more » « less
-
Abstract Botrytis cinerea is a fungal pathogen that causes necrotic disease on more than a thousand known hosts widely spread across the plant kingdom. How B. cinerea interacts with such extensive host diversity remains largely unknown. To address this question, we generated an infectivity matrix of 98 strains of B. cinerea on 90 genotypes representing eight host plants. This experimental infectivity matrix revealed that the disease outcome is largely explained by variations in either the host resistance or pathogen virulence. However, the specific interactions between host and pathogen account for 16% of the disease outcome. Furthermore, the disease outcomes cluster among genotypes of a species but are independent of the relatedness between hosts. When analyzing the host specificity and virulence of B. cinerea, generalist strains are predominant. In this fungal necrotroph, specialization may happen by a loss in virulence on most hosts rather than an increase of virulence on a specific host. To uncover the genetic architecture of Botrytis host specificity and virulence, a genome-wide association study (GWAS) was performed and revealed up to 1492 genes of interest. The genetic architecture of these traits is widespread across the B. cinerea genome. The complexity of the disease outcome might be explained by hundreds of functionally diverse genes putatively involved in adjusting the infection to diverse hosts.more » « less
-
Abstract Background and aimsPlant interactions with soil microbial communities are critical for understanding plant health, improving horticultural and agricultural outcomes, and maintaining diverse natural communities. In some cases, disease suppressive soils enhance plant survival in the presence of pathogens. However, species-specific differences and seasonal variation complicate our understanding of the drivers of soil fungal communities and their consequences for plants. Here, we aim to describe soil fungal communities acrossRhododendronspecies and seasons as well as the test for fungal indicators ofRhododendronspecies in the soil. Further, we test possible mechanisms governing disease suppressive soils to the oomycete pathogenPhytophthora cinnamomi. Variation in disease susceptibility to this pathogen across species and clades allows us to test for possible fungal drivers of disease suppressive soils. MethodsWe conducted high throughput sequencing of the fungal communities found in soil collected under 14Rhododendronspecies and across 2 seasons (April, October) at two sites in Ohio, USA. Phylogenetic analyses were used to ask whether fungal community composition correlated with increased plant survival with the addition of whole soil communities from a prior greenhouse experiment. ResultsEffects ofRhododendronspecies (R2 = 0.13), season (R2 = 0.01) and their interaction on fungal communities (R2 = 0.11) were statistically significant. Fungal community composition negatively correlated with survival following exposure to whole soil microbial communities, though this result depended on the presence ofR. minus. Forty-fiveTrichodermataxa were identified across our soil samples, and someTrichodermawere significantly associated with particularRhododendronspecies (e.g.Trichoderma atroviridewas associated withR. molle) in indicator species analyses. ConclusionThe correlation between plant responses to soil biotic communities and fungal community composition, as well as the presence of potential beneficial taxa such asTrichodermaand mycorrhizal fungi, are consistent with fungal-mediated survival benefits from the pathogenPhytophthora cinnamomi.more » « less
-
Abstract Infectious disease systems frequently exhibit strong seasonal patterns, yet the mechanisms that underpin intra‐annual cycles are unclear, particularly in tropical regions. We hypothesized that host immune function fluctuates seasonally, contributing to oscillations in infection patterns in a tropical disease system. To test this hypothesis, we investigated a key host defense of amphibians against a lethal fungal pathogen,Batrachochytrium dendrobatidis(Bd). We integrated two field experiments in which we perturbed amphibian skin secretions, a critical host immune mechanism, in Panamanian rocket frogs (Colostethus panamansis). We found that this immunosuppressive technique of reducing skin secretions in wild frog populations increasedBdprevalence and infection intensity, indicating that this immune defense contributes to resistance toBdin wild frog populations. We also found that the chemical composition and anti‐Bdeffectiveness of frog skin secretions varied across seasons, with greater pathogen inhibition during the dry season relative to the wet season. These results suggest that the effectiveness of this host defense mechanism shifts across seasons, likely contributing to seasonal infection patterns in a lethal disease system. More broadly, our findings indicate that host immune defenses can fluctuate across seasons, even in tropical regions where temperatures are relatively stable, which advances our understanding of intra‐annual cycles of infectious disease dynamics.more » « less
An official website of the United States government
