skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High Spectral Resolution Observations of Propynal (HCCCHO) toward TMC-1 from the GOTHAM Large Program on the GBT
Abstract We used new high spectral resolution observations of propynal (HCCCHO) toward TMC-1 and in the laboratory to update the spectral line catalog available for transitions of HCCCHO—specifically at frequencies lower than 30 GHz, which were previously discrepant in a publicly available catalog. The observed astronomical frequencies provided a high enough spectral resolution that, when combined with high-resolution (∼2 kHz) measurements taken in the laboratory, a new, consistent fit to both the laboratory and astronomical data was achieved. Now with a nearly exact (<1 kHz) frequency match to theJ= 2–1 and 3–2 transitions in the astronomical data, using a Markov Chain Monte Carlo analysis, a best fit to the total HCCCHO column density of 7.28 1.94 + 4.08 × 10 12 cm−2was found with a surprisingly low excitation temperature of just over 3 K. This column density is around a factor of 5 times larger than reported in previous studies. Finally, this work highlights that care is needed when using publicly available spectral catalogs to characterize astronomical spectra. The availability of these catalogs is essential to the success of modern astronomical facilities and will only become more important as the next generation of facilities comes online.  more » « less
Award ID(s):
2307137 2205126
PAR ID:
10582077
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
AAS
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
976
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
105
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present the synthesis and laboratory rotational spectroscopy of the seven-ring polycyclic aromatic hydrocarbon (PAH) cyanocoronene (C24H11CN) using a laser-ablation-assisted cavity-enhanced Fourier transform microwave spectrometer. A total of 71 transitions were measured and assigned between 6.8 and 10.6 GHz. Using these assignments, we searched for emission from cyanocoronene in the Green Bank Telescope (GBT) Observations of TMC-1: Hunting Aromatic Molecules project observations of the cold dark molecular cloud TMC-1 using the 100 m GBT. We detect a number of individually resolved transitions in ultrasensitiveX-band observations and perform a Markov Chain Monte Carlo analysis to derive best-fit parameters, including a total column density of N ( C 24 H 11 CN ) = 2.6 9 0.23 + 0.26 × 1 0 12 cm 2 at a temperature of 6.0 5 0.37 + 0.38 K. A spectral stacking and matched filtering analysis provides a robust 17.3σsignificance to the overall detection. The derived column density is comparable to that of cyano-substituted naphthalene, acenaphthylene, and pyrene, defying the trend of decreasing abundance with increasing molecular size and complexity found for carbon chains. We discuss the implications of the detection for our understanding of interstellar PAH chemistry and highlight major open questions and next steps. 
    more » « less
  2. Abstract We present the spectroscopic characterization of cyclopropenethione in the laboratory and detect it in space using the Green Bank Telescope Observations of TMC-1: Hunting Aromatic Molecules survey. The detection of this molecule—the missing link in understanding the C3H2S isomeric family in TMC-1—completes the detection of all three low-energy isomers of C3H2S, as both CH2CCS and HCCCHS have been previously detected in this source. The total column density of this molecule (NTof 5.7 2 1.61 + 2.65 × 1 0 10 cm−2at an excitation temperature of 4 . 7 1.1 + 1.3 K) is smaller than both CH2CCS and HCCCHS and follows nicely the relative dipole principle (RDP), a kinetic rule of thumb for predicting isomer abundances that suggests that, all other chemistry among a family of isomers being the same, the member with the smallest dipole (μ) should be the most abundant. The RDP now holds for the astronomical abundance ratios of both the S-bearing and O-bearing counterparts observed in TMC-1; however, CH2CCO continues to elude detection in any astronomical source. 
    more » « less
  3. Abstract We report on a measurement of Spin Density Matrix Elements (SDMEs) in hard exclusive$$\rho ^0$$ ρ 0 meson muoproduction at COMPASS using 160 GeV/cpolarised$$ \mu ^{+}$$ μ + and$$ \mu ^{-}$$ μ - beams impinging on a liquid hydrogen target. The measurement covers the kinematic range 5.0 GeV/$$c^2$$ c 2 $$< W<$$ < W < 17.0 GeV/$$c^2$$ c 2 , 1.0 (GeV/c)$$^2$$ 2 $$< Q^2<$$ < Q 2 < 10.0 (GeV/c)$$^2$$ 2 and 0.01 (GeV/c)$$^2$$ 2 $$< p_{\textrm{T}}^2<$$ < p T 2 < 0.5 (GeV/c)$$^2$$ 2 . Here,Wdenotes the mass of the final hadronic system,$$Q^2$$ Q 2 the virtuality of the exchanged photon, and$$p_{\textrm{T}}$$ p T the transverse momentum of the$$\rho ^0$$ ρ 0 meson with respect to the virtual-photon direction. The measured non-zero SDMEs for the transitions of transversely polarised virtual photons to longitudinally polarised vector mesons ($$\gamma ^*_T \rightarrow V^{ }_L$$ γ T V L ) indicate a violation ofs-channel helicity conservation. Additionally, we observe a dominant contribution of natural-parity-exchange transitions and a very small contribution of unnatural-parity-exchange transitions, which is compatible with zero within experimental uncertainties. The results provide important input for modelling Generalised Parton Distributions (GPDs). In particular, they may allow one to evaluate in a model-dependent way the role of parton helicity-flip GPDs in exclusive$$\rho ^0$$ ρ 0 production. 
    more » « less
  4. Abstract The electricE1 and magneticM1 dipole responses of the$$N=Z$$ N = Z nucleus$$^{24}$$ 24 Mg were investigated in an inelastic photon scattering experiment. The 13.0 MeV electrons, which were used to produce the unpolarised bremsstrahlung in the entrance channel of the$$^{24}$$ 24 Mg($$\gamma ,\gamma ^{\prime }$$ γ , γ ) reaction, were delivered by the ELBE accelerator of the Helmholtz-Zentrum Dresden-Rossendorf. The collimated bremsstrahlung photons excited one$$J^{\pi }=1^-$$ J π = 1 - , four$$J^{\pi }=1^+$$ J π = 1 + , and six$$J^{\pi }=2^+$$ J π = 2 + states in$$^{24}$$ 24 Mg. De-excitation$$\gamma $$ γ rays were detected using the four high-purity germanium detectors of the$$\gamma $$ γ ELBE setup, which is dedicated to nuclear resonance fluorescence experiments. In the energy region up to 13.0 MeV a total$$B(M1)\uparrow = 2.7(3)~\mu _N^2$$ B ( M 1 ) = 2.7 ( 3 ) μ N 2 is observed, but this$$N=Z$$ N = Z nucleus exhibits only marginalE1 strength of less than$$\sum B(E1)\uparrow \le 0.61 \times 10^{-3}$$ B ( E 1 ) 0.61 × 10 - 3  e$$^2 \, $$ 2 fm$$^2$$ 2 . The$$B(\varPi 1, 1^{\pi }_i \rightarrow 2^+_1)/B(\varPi 1, 1^{\pi }_i \rightarrow 0^+_{gs})$$ B ( Π 1 , 1 i π 2 1 + ) / B ( Π 1 , 1 i π 0 gs + ) branching ratios in combination with the expected results from the Alaga rules demonstrate thatKis a good approximative quantum number for$$^{24}$$ 24 Mg. The use of the known$$\rho ^2(E0, 0^+_2 \rightarrow 0^+_{gs})$$ ρ 2 ( E 0 , 0 2 + 0 gs + ) strength and the measured$$B(M1, 1^+ \rightarrow 0^+_2)/B(M1, 1^+ \rightarrow 0^+_{gs})$$ B ( M 1 , 1 + 0 2 + ) / B ( M 1 , 1 + 0 gs + ) branching ratio of the 10.712 MeV$$1^+$$ 1 + level allows, in a two-state mixing model, an extraction of the difference$$\varDelta \beta _2^2$$ Δ β 2 2 between the prolate ground-state structure and shape-coexisting superdeformed structure built upon the 6432-keV$$0^+_2$$ 0 2 + level. 
    more » « less
  5. Abstract M dwarfs are common host stars to exoplanets but often lack atmospheric abundance measurements. Late-M dwarfs are also good analogs to the youngest substellar companions, which share similarTeff∼ 2300–2800 K. We present atmospheric analyses for the M7.5 companion HIP 55507 B and its K6V primary star with Keck/KPIC high-resolution (R∼ 35,000)K-band spectroscopy. First, by including KPIC relative radial velocities between the primary and secondary in the orbit fit, we improve the dynamical mass precision by 60% and find M B = 88.0 3.2 + 3.4 M Jup , putting HIP 55507 B above the stellar–substellar boundary. We also find that HIP 55507 B orbits its K6V primary star with a = 38 3 + 4 au ande= 0.40 ± 0.04. From atmospheric retrievals of HIP 55507 B, we measure [C/H] = 0.24 ± 0.13, [O/H] = 0.15 ± 0.13, and C/O = 0.67 ± 0.04. Moreover, we strongly detect13CO (7.8σsignificance) and tentatively detect H 2 18 O (3.7σsignificance) in the companion’s atmosphere and measure 12 CO / 13 CO = 98 22 + 28 and H 2 16 O / H 2 18 O = 240 80 + 145 after accounting for systematic errors. From a simplified retrieval analysis of HIP 55507 A, we measure 12 CO / 13 CO = 79 16 + 21 and C 16 O / C 18 O = 288 70 + 125 for the primary star. These results demonstrate that HIP 55507 A and B have consistent12C/13C and16O/18O to the <1σlevel, as expected for a chemically homogeneous binary system. Given the similar flux ratios and separations between HIP 55507 AB and systems with young substellar companions, our results open the door to systematically measuring13CO and H 2 18 O abundances in the atmospheres of substellar or even planetary-mass companions with similar spectral types. 
    more » « less