skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: p-adic Differential Equations
Now in its second edition, this volume provides a uniquely detailed study of $$P$$-adic differential equations. Assuming only a graduate-level background in number theory, the text builds the theory from first principles all the way to the frontiers of current research, highlighting analogies and links with the classical theory of ordinary differential equations. The author includes many original results which play a key role in the study of $$P$$-adic geometry, crystalline cohomology, $$P$$-adic Hodge theory, perfectoid spaces, and algorithms for L-functions of arithmetic varieties. This updated edition contains five new chapters, which revisit the theory of convergence of solutions of $$P$$-adic differential equations from a more global viewpoint, introducing the Berkovich analytification of the projective line, defining convergence polygons as functions on the projective line, and deriving a global index theorem in terms of the Laplacian of the convergence polygon.  more » « less
Award ID(s):
2053473
PAR ID:
10582127
Author(s) / Creator(s):
Publisher / Repository:
Cambridge University Press
Date Published:
ISBN:
9781009123341
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider the KZ equations over C in the case, when the hypergeometric solutions are hyperelliptic integrals of genus g. Then the space of solutions is a 2g-dimensional complex vector space. We also consider the same equations modulo ps, where p is an odd prime and s is a positive integer, and over the field Q_p of p-adic numbers. We construct polynomial solutions of the KZ equations modulo ps and study the space Mps of all constructed solutions. We show that the p-adic limit of Mps as s→∞ gives us a g-dimensional vector space of solutions of the KZ equations over Qp. The solutions over Qp are power series at a certain asymptotic zone of the KZ equations. In the appendix written jointly with Steven Sperber we consider all asymptotic zones of the KZ equations in the case g=1 of elliptic integrals. The p-adic limit of Mps as s→∞ gives us a one-dimensional space of solutions over Qp at every asymptotic zone. We apply Dwork's theory and show that our germs of solutions over Qp defined at different asymptotic zones analytically continue into a single global invariant line subbundle of the associated KZ connection. Notice that the corresponding KZ connection over C does not have proper nontrivial invariant subbundles, and therefore our invariant line subbundle is a new feature of the KZ equations over Qp. We describe the Frobenius transformations of solutions of the KZ equations for g=1 and then recover the unit roots of the zeta functions of the elliptic curves defined by the equations y2=βx(x−1)(x−α) over the finite field Fp. Here α,β∈F×p,α≠1 
    more » « less
  2. Novikov, Krichever (Ed.)
    In [TV19a] the equivariant quantum differential equation (qDE) for a projective space was considered and a compatible system of difference qKZ equations was introduced; the space of solutions to the joint system of the qDE and qKZ equations was identified with the space of the equivariant K-theory algebra of the projective space; Stokes bases in the space of solutions were identified with exceptional bases in the equivariant K-theory algebra. This paper is a continuation of [TV19a]. We describe the relation between solutions to the joint system of the qDE and qKZ equations and the topological-enumerative solution to the qDE only, defined as a generating function of equivariant descendant Gromov-Witten invariants. The relation is in terms of the equivariant graded Chern character on the equivariant K-theory algebra, the equivariant Gamma class of the projective space, and the equivariant first Chern class of the tangent bundle of the projective space. We consider a Stokes basis, the associated exceptional basis in the equivariant K-theory algebra, and the associated Stokes matrix. We show that the Stokes matrix equals the Gram matrix of the equivariant Grothendieck-Euler-Poincaré pairing wrt to the basis, which is the left dual to the associated exceptional basis. We identify the Stokes bases in the space of solutions with explicit full exceptional collections in the equivariant derived category of coherent sheaves on the projective space, where the elements of those exceptional collections are just line bundles on the projective space and exterior powers of the tangent bundle of the projective space. These statements are equivariant analogs of results of G. Cotti, B. Dubrovin, D. Guzzetti, and S. Galkin, V. Golyshev, H. Iritani. 
    more » « less
  3. This paper completes the construction of $$p$$ -adic $$L$$ -functions for unitary groups. More precisely, in Harris, Li and Skinner [‘ $$p$$ -adic $$L$$ -functions for unitary Shimura varieties. I. Construction of the Eisenstein measure’, Doc. Math. Extra Vol. (2006), 393–464 (electronic)], three of the authors proposed an approach to constructing such $$p$$ -adic $$L$$ -functions (Part I). Building on more recent results, including the first named author’s construction of Eisenstein measures and $$p$$ -adic differential operators [Eischen, ‘A $$p$$ -adic Eisenstein measure for unitary groups’, J. Reine Angew. Math. 699 (2015), 111–142; ‘ $$p$$ -adic differential operators on automorphic forms on unitary groups’, Ann. Inst. Fourier (Grenoble) 62 (1) (2012), 177–243], Part II of the present paper provides the calculations of local $$\unicode[STIX]{x1D701}$$ -integrals occurring in the Euler product (including at $$p$$ ). Part III of the present paper develops the formalism needed to pair Eisenstein measures with Hida families in the setting of the doubling method. 
    more » « less
  4. The Littlewood–Paley decomposition for functions defined on the whole space [Formula: see text] and related Besov space techniques have become indispensable tools in the study of many partial differential equations (PDEs) with [Formula: see text] as the spatial domain. This paper intends to develop parallel tools for the periodic domain [Formula: see text]. Taking advantage of the boundedness and convergence theory on the square-cutoff Fourier partial sum, we define the Littlewood–Paley decomposition for periodic functions via the square cutoff. We remark that the Littlewood–Paley projections defined via the circular cutoff in [Formula: see text] with [Formula: see text] in the literature do not behave well on the Lebesgue space [Formula: see text] except for [Formula: see text]. We develop a complete set of tools associated with this decomposition, which would be very useful in the study of PDEs defined on [Formula: see text]. As an application of the tools developed here, we study the periodic weak solutions of the [Formula: see text]-dimensional Boussinesq equations with the fractional dissipation [Formula: see text] and without thermal diffusion. We obtain two main results. The first assesses the global existence of [Formula: see text]-weak solutions for any [Formula: see text] and the existence and uniqueness of the [Formula: see text]-weak solutions when [Formula: see text] for [Formula: see text]. The second establishes the zero thermal diffusion limit with an explicit convergence rate. 
    more » « less
  5. In the 1970's, Serre exploited congruences between q-expansion coefficients of Eisenstein series to produce p-adic families of Eisenstein series and, in turn, p-adic zeta functions. Partly through integration with more recent machinery, including Katz's approach to p-adic differential operators, his strategy has influenced four decades of developments. Prior papers employing Katz's and Serre's ideas exploiting differential operators and congruences to produce families of automorphic forms rely crucially on q-expansions of automorphic forms. The overarching goal of the present paper is to adapt the strategy to automorphic forms on unitary groups, which lack q-expansions when the signature is of the form (a,b), a≠b. In particular, this paper completely removes the restrictions on the signature present in prior work. As intermediate steps, we achieve two key objectives. First, partly by carefully analyzing the action of the Young symmetrizer on Serre-Tate expansions, we explicitly describe the action of differential operators on the Serre-Tate expansions of automorphic forms on unitary groups of arbitrary signature. As a direct consequence, for each unitary group, we obtain congruences and families analogous to those studied by Katz and Serre. Second, via a novel lifting argument, we construct a p-adic measure taking values in the space of p-adic automorphic forms on unitary groups of any prescribed signature. We relate the values of this measure to an explicit p-adic family of Eisenstein series. One application of our results is to the recently completed construction of p-adic L-functions for unitary groups by the first named author, Harris, Li, and Skinner. 
    more » « less