skip to main content


Title: Notes on solutions of KZ equations modulo $p^s$ and $p$-adic limit $s\to\infty$
We consider the KZ equations over C in the case, when the hypergeometric solutions are hyperelliptic integrals of genus g. Then the space of solutions is a 2g-dimensional complex vector space. We also consider the same equations modulo ps, where p is an odd prime and s is a positive integer, and over the field Q_p of p-adic numbers. We construct polynomial solutions of the KZ equations modulo ps and study the space Mps of all constructed solutions. We show that the p-adic limit of Mps as s→∞ gives us a g-dimensional vector space of solutions of the KZ equations over Qp. The solutions over Qp are power series at a certain asymptotic zone of the KZ equations. In the appendix written jointly with Steven Sperber we consider all asymptotic zones of the KZ equations in the case g=1 of elliptic integrals. The p-adic limit of Mps as s→∞ gives us a one-dimensional space of solutions over Qp at every asymptotic zone. We apply Dwork's theory and show that our germs of solutions over Qp defined at different asymptotic zones analytically continue into a single global invariant line subbundle of the associated KZ connection. Notice that the corresponding KZ connection over C does not have proper nontrivial invariant subbundles, and therefore our invariant line subbundle is a new feature of the KZ equations over Qp. We describe the Frobenius transformations of solutions of the KZ equations for g=1 and then recover the unit roots of the zeta functions of the elliptic curves defined by the equations y2=βx(x−1)(x−α) over the finite field Fp. Here α,β∈F×p,α≠1  more » « less
Award ID(s):
1954266
NSF-PAR ID:
10411616
Author(s) / Creator(s):
Date Published:
Journal Name:
Contemporary mathematics
Volume:
780
ISSN:
2705-1056
Page Range / eLocation ID:
309-347
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider the KZ differential equations over C in the case, when the hypergeometric solutions are one-dimensional integrals. We also consider the same differential equations over a finite field F_p. We study the polynomial solutions of these differential equations over F_p, constructed in a previous work joint with V. Schechtman and called the F_p-hypergeometric solutions. The dimension of the space of F_p-hypergeometric solutions depends on the prime number p. We say that the KZ equations have ample reduction for a prime p, if the dimension of the space of F_p-hypergeometric solutions is maximal possible, that is, equal to the dimension of the space of solutions of the corresponding KZ equations over C. Under the assumption of ample reduction, we prove a determinant formula for the matrix of coordinates of basis F_p-hypergeometric solutions. The formula is analogous to the corresponding formula for the determinant of the matrix of coordinates of basis complex hypergeometric solutions, in which binomials (z_i−z_j)^{M_i+M_j} are replaced with (z_i−z_j)^{Mi+Mj−p} and the Euler gamma function Γ(x) is replaced with a suitable F_p-analog defined on F_p 
    more » « less
  2. null (Ed.)
    We consider the KZ differential equations over C in the case, when the hypergeometric solutions are one-dimensional integrals.We also consider the same differential equations over a finite field F_p. We study the space of polynomial solutions of these differential equations over F_p, constructed in a previous work by Schechtman and the second author. Using Hasse–Witt matrices, we identify the space of these polynomial solutions over F_p with the space dual to a certain subspace of regular differentials on an associated curve. We also relate these polynomial solutions over F_p and the hypergeometric solutions over C. 
    more » « less
  3. Abstract

    We introduce a family of Finsler metrics, called the$$L^p$$Lp-Fisher–Rao metrics$$F_p$$Fp, for$$p\in (1,\infty )$$p(1,), which generalizes the classical Fisher–Rao metric$$F_2$$F2, both on the space of densities$${\text {Dens}}_+(M)$$Dens+(M)and probability densities$${\text {Prob}}(M)$$Prob(M). We then study their relations to the Amari–C̆encov$$\alpha $$α-connections$$\nabla ^{(\alpha )}$$(α)from information geometry: on$${\text {Dens}}_+(M)$$Dens+(M), the geodesic equations of$$F_p$$Fpand$$\nabla ^{(\alpha )}$$(α)coincide, for$$p = 2/(1-\alpha )$$p=2/(1-α). Both are pullbacks of canonical constructions on$$L^p(M)$$Lp(M), in which geodesics are simply straight lines. In particular, this gives a new variational interpretation of$$\alpha $$α-geodesics as being energy minimizing curves. On$${\text {Prob}}(M)$$Prob(M), the$$F_p$$Fpand$$\nabla ^{(\alpha )}$$(α)geodesics can still be thought as pullbacks of natural operations on the unit sphere in$$L^p(M)$$Lp(M), but in this case they no longer coincide unless$$p=2$$p=2. Using this transformation, we solve the geodesic equation of the$$\alpha $$α-connection by showing that the geodesic are pullbacks of projections of straight lines onto the unit sphere, and they always cease to exists after finite time when they leave the positive part of the sphere. This unveils the geometric structure of solutions to the generalized Proudman–Johnson equations, and generalizes them to higher dimensions. In addition, we calculate the associate tensors of$$F_p$$Fp, and study their relation to$$\nabla ^{(\alpha )}$$(α).

     
    more » « less
  4. null (Ed.)
    Following a suggestion of Peter Scholze, we construct an action of G m ^ \widehat {\mathbb {G}_m} on the Katz moduli problem, a profinite-étale cover of the ordinary locus of the p p -adic modular curve whose ring of functions is Serre’s space of p p -adic modular functions. This action is a local, p p -adic analog of a global, archimedean action of the circle group S 1 S^1 on the lattice-unstable locus of the modular curve over C \mathbb {C} . To construct the G m ^ \widehat {\mathbb {G}_m} -action, we descend a moduli-theoretic action of a larger group on the (big) ordinary Igusa variety of Caraiani-Scholze. We compute the action explicitly on local expansions and find it is given by a simple multiplication of the cuspidal and Serre-Tate coordinates q q ; along the way we also prove a natural generalization of Dwork’s equation τ = log ⁡ q \tau =\log q for extensions of Q p / Z p \mathbb {Q}_p/\mathbb {Z}_p by μ p ∞ \mu _{p^\infty } valid over a non-Artinian base. Finally, we give a direct argument (without appealing to local expansions) to show that the action of G m ^ \widehat {\mathbb {G}_m} integrates the differential operator θ \theta coming from the Gauss-Manin connection and unit root splitting, and explain an application to Eisenstein measures and p p -adic L L -functions. 
    more » « less
  5. Abstract Let Ω ⊂ ℝ n + 1 {\Omega\subset\mathbb{R}^{n+1}} , n ≥ 2 {n\geq 2} , be a 1-sided non-tangentially accessible domain (also known as uniform domain), that is, Ω satisfies the interior Corkscrew and Harnack chain conditions, which are respectively scale-invariant/quantitative versions of openness and path-connectedness. Let us assume also that Ω satisfies the so-called capacity density condition, a quantitative version of the fact that all boundary points are Wiener regular. Consider two real-valued (non-necessarily symmetric) uniformly elliptic operators L 0 ⁢ u = - div ⁡ ( A 0 ⁢ ∇ ⁡ u )   and   L ⁢ u = - div ⁡ ( A ⁢ ∇ ⁡ u ) L_{0}u=-\operatorname{div}(A_{0}\nabla u)\quad\text{and}\quad Lu=-%\operatorname{div}(A\nabla u) in Ω, and write ω L 0 {\omega_{L_{0}}} and ω L {\omega_{L}} for the respective associated elliptic measures. The goal of this article and its companion[M. Akman, S. Hofmann, J. M. Martell and T. Toro,Perturbation of elliptic operators in 1-sided NTA domains satisfying the capacity density condition,preprint 2021, https://arxiv.org/abs/1901.08261v3 ]is to find sufficient conditions guaranteeing that ω L {\omega_{L}} satisfies an A ∞ {A_{\infty}} -condition or a RH q {\operatorname{RH}_{q}} -condition with respect to ω L 0 {\omega_{L_{0}}} . In this paper, we are interested in obtaininga square function and non-tangential estimates for solutions of operators as before. We establish that bounded weak null-solutions satisfy Carleson measure estimates, with respect to the associated elliptic measure. We also show that for every weak null-solution, the associated square function can be controlled by the non-tangential maximal function in any Lebesgue space with respect to the associated elliptic measure. These results extend previous work ofDahlberg, Jerison and Kenig and are fundamental for the proof of the perturbation results in the paper cited above. 
    more » « less