skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 27, 2025

Title: Expressive STEM Storymaking: Art, Literacy, and Creative Computing
This chapter features intersections of art, literacy, and creative computing. As a component of STEAM, creative computing augments story creation, or storymaking (Buganza et al., 2023; Compton & Thompson, 2018), prompting learners to explore expressive meaning making as collective interactions with texts. To signify a way of teaching that supports such learning activities, we propose expressive STEM as a design principle, illustrated here with examples from an elementary school and a preservice art education program in Texas, USA. Principles of expressive STEM storymaking drawn from these examples and from our teaching and research are offered in the chapter’s conclusion.  more » « less
Award ID(s):
2006595
PAR ID:
10582201
Author(s) / Creator(s):
;
Editor(s):
Lai, A; Cooper, Y
Publisher / Repository:
BRILL
Date Published:
ISBN:
9789004714731
Page Range / eLocation ID:
210 to 226
Subject(s) / Keyword(s):
computational literacies computational thinking creative computing storymaking art education
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. de Vries, E. (Ed.)
    This symposium addresses dance as a site for STEM learning. We present papers from five research projects that each sought to engage youth in embodied STEM learning using dance, exploring the power of creative embodied experiences and the body’s potential as an expressive tool and resource for learning. We show how dance activities expanded access to STEM and supported sense-making; how dancer and dance-making practices were leveraged to support computational thinking, modeling, and inquiry; and how moving bodies in creative ways helped to generate new insights by allowing for new perspectives. Across our work, we seek to understand the multiple, rich learning opportunities that emerge from working across the arts and sciences, dance and STEM. Together our research shows that attending to opportunities for STEM engagement and learning through dance practices can broaden access to learning and engagement in STEM for all. 
    more » « less
  2. The quantum computing curriculum developed in the Freshman Research Initiative at The University of Texas at Austin caters to students who have not yet studied advanced math and science. We lower the barrier to entry by simplifying notation and teaching through application of the concepts, only covering math methods as they become necessary. Physical motivation and simulation connect with students, and embedded examples and practice problems help cement their understanding. Through learning to program in Python and completing creative technical projects, students gain valuable, transferable skills while exploring quantum information and computing. 
    more » « less
  3. STUDY CONTEXT: The overarching goal of this project is to address the disconnect between science, design, and technology (Perignat & Katz-Buonincontro, 2019). We examine how urban and rural high school students benefit from innovative learning experiences in plant science that integrate these disciplines while gaining interest in and skills for future STEM careers. This project tests a STEAM (Art in STEM) teaching model in which students create scientific products to incorporate in Augmented and Virtual Reality (AVR) platforms. This experience inspires creative learning, provides critical thinking and problem-solving benefits, supports concepts of innovation, and allows students to connect to real-life situations impacting their career paths. RESEARCH DESIGN: Objectives: 1. Inspire interest in STEM careers among students and provide them with skills for a future STEM career, 2. Foster knowledge and appreciation of plant science among students, 3. Integrate art/design into STEM plant science education, and 4. Apply AVR technology to advance in plant science education through the use of novel tools and methodologies. Teams of self-identified science, technophile, and art students receive training in 3D modeling. With support from scientists, they create models of plants under research at our institution, write worksheets, and give presentations in public/scientific events. Teams’ products will be shared globally through the education community of our AVR partner institution. To assess the project objectives, we are using a mixed-methods approach using pre/post open-ended self-reflections and surveys (STEM Semantics Survey with additional questions for A (Art/Design); Plant Awareness Disparity Index (PAD-I)). ANALYSES AND INTERPRETATION: Data collection is in its initial stages. We will present preliminary results from surveys and reflections from 28 students. The students worked in seven teams that created models of corn, alfalfa, volvox, and milkweed. CONTRIBUTION: This project contributes to STEAM, an emerging discipline with scant information on theory, best practices, and practical applications, by testing a teaching model in which students design and create scientific products. The project contributes to the body of knowledge on AVR teaching tools from a different approach by allowing the students to create their own AVR products. The project also contributes to interesting and challenging ways to learn about plant science and promote plant awareness. 
    more » « less
  4. Elementary school teachers who enter the profession with positive STEM attitudes and abilities have increased confidence in teaching math and science which can positively impact their students. Understanding the reasons why STEM majors switch career paths and persist in elementary education could have implications for undergraduate recruitment as well as long-term teacher retention. This paper presents two case studies using interview data involving fourth-year undergraduate elementary teacher candidates, both former STEM majors. In this qualitative analysis, I unpack motivating factors pertinent to their educational choices, in particular why participants switched from STEM fields to education. Results show high value is placed on elements like creative license, enjoyable classrooms, strong relationships, and safe spaces to take risks. Less important are lucrative careers and professional “success.” 
    more » « less
  5. Science, technology, engineering and mathematics (STEM) has been the foundation for many years for teaching critical thinking and problem-solving skills. The U.S. Department of Education website includes information about the importance of STEM in an increasingly complex world and the importance of all youth to have problem solving skills. Many researchers and practitioners propose moving from using the acronym STEM to science, technology, engineering, arts, and mathematics (STEAM). The difference in STEM and STEAM is the inclusion of arts of any kind, aligning artistic creativity with STEM learning. Zimmerman and Sprung concluded that motivation and self-confidence in computing for females is increased when they can learn CS in the context of a content area, they are already comfortable with [1]. Recognizing this cross-disciplinary connection approach, Mississippi State University researchers in 2014 integrated a physical art component module that enabled girls to design robots using crafting material, with positive results. In 2019, the team piloted a 4-day camp that integrated learning dance moves with algorithmic thinking and computer programming. This paper will discuss the results of that camp that was offered in a very small rural town in a southern state in the United States, and how the arts component influenced the learners’ perception of computing. 
    more » « less