skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 4, 2025

Title: Boundless: Generating photorealistic synthetic data for object detection in urban streetscapes
We introduce Boundless, a photo-realistic synthetic data generation system for enabling highly accurate object detection in dense urban streetscapes. Boundless can replace massive real-world data collection and manual groundtruth object annotation (labeling) with an automated and configurable process. Boundless is based on the Unreal Engine 5 (UE5) City Sample project with improvements enabling accurate collection of 3D bounding boxes across different lighting and scene variability conditions. We evaluate the performance of object detection models trained on the dataset generated by Boundless when used for inference on a real-world dataset acquired from medium-altitude cameras. We compare the performance of the Boundless-trained model against the CARLA-trained model and observe an improvement of 7.8 mAP. The results we achieved support the premise that synthetic data generation is a credible methodology for training/fine-tuning scalable object detection models for urban scenes.  more » « less
Award ID(s):
2148128
PAR ID:
10582222
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
arXiv:2409.03022v2 [cs.CV]
Date Published:
Journal Name:
arxiv
ISSN:
arXiv:2409.03022v2 [cs.CV]
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Arai, Igor (Ed.)
    This research explores practical applications of Transfer Learning and Spatial Attention mechanisms using pre-trained models from an open-source simulator, CARLA (Car Learning to Act). The study focuses on vehicle tracking using aerial images, utilizing transformers and graph algorithms for keypoint detection. The proposed detector training process optimizes model parameters without heavy reliance on manually set hyperparameters. The loss function considers both class distribution and position localization of ground truth data. The study utilizes a three-stage methodology: pre-trained model selection, fine-tuning with a custom synthetic dataset, and evaluation using real-world aerial datasets. The results demonstrate the effectiveness of our synthetic transformer-based transfer learning technique in enhancing object detection accuracy and localization. When tested with real-world images, our approach achieved an 88% detection, compared to only 30% when using YOLOv8. The findings underscore the advantages of incorporating graph-based loss functions in transfer learning and position-encoding techniques, demonstrating their effectiveness in realistic machine learning applications with unbalanced classes. 
    more » « less
  2. Kohei, Arai (Ed.)
    This research explores practical applications of Transfer Learning and Spatial Attention mechanisms using pre-trained models from an open-source simulator, CARLA (Car Learning to Act). The study focuses on vehicle tracking using aerial images, utilizing transformers and graph algorithms for keypoint detection. The proposed detector training process optimizes model parameters without heavy reliance on manually set hyperparameters. The loss function considers both class distribution and position localization of ground truth data. The study utilizes a three-stage methodology: pre-trained model selection, fine-tuning with a custom synthetic dataset, and evaluation using real-world aerial datasets. The results demonstrate the effectiveness of our synthetic transformer-based transfer learning technique in enhancing object detection accuracy and localization. When tested with real-world images, our approach achieved an 88% detection, compared to only 30% when using YOLOv8. The findings underscore the advantages of incorporating graph-based loss functions in transfer learning and position-encoding techniques, demonstrating their effectiveness in realistic machine learning applications with unbalanced classes. 
    more » « less
  3. We introduce Constellation, a dataset of 13K images suitable for research on detection of objects in dense urban streetscapes observed from high-elevation cameras, collected for a variety of temporal conditions. The dataset addresses the need for curated data to explore problems in small object detection exemplified by the limited pixel footprint of pedestrians observed tens of meters from above. It enables the testing of object detection models for variations in lighting, building shadows, weather, and scene dynamics. Weevaluate contemporary object detection architectures on the dataset, observing that state-of-the-art methods have lower performance in detecting small pedestrians compared to vehicles, corresponding to a 10% difference in average precision (AP). Using structurally similar datasets for pretraining the models results in an increase of 1.8% mean AP (mAP). We further find that incorporating domain-specific data augmentations helps improve model performance. Using pseudo-labeled data, obtained from inference outcomes of the best-performing models, improves the performance of the models. Finally, comparing the models trained using the data collected in two different time intervals, we find a performance drift in models due to the changes in intersection conditions over time. The best-performing model achieves a pedestrian AP of 92.0% with 11.5 ms inference time on NVIDIA A100 GPUs, and an mAP of 95.4%. 
    more » « less
  4. In this paper, an urban object detection system via unmanned aerial vehicles (UAVs) is developed to collect real-time traffic information, which can be further utilized in many applications such as traffic monitoring and urban traffic management. The system includes an object detection algorithm, deep learning model training, and deployment on a real UAV. For the object detection algorithm, the Mobilenet-SSD model is applied owing to its lightweight and efficiency, which make it suitable for real-time applications on an onboard microprocessor. For model training, federated learning (FL) is used to protect privacy and increase efficiency with parallel computing. Last, the FL-trained object detection model is deployed on a real UAV for real-time performance testing. The experimental results show that the object detection algorithm can reach a speed of 18 frames per second with good detection performance, which shows the real-time computation ability of a resource-limited edge device and also validates the effectiveness of the developed system. 
    more » « less
  5. Living in a data-driven world with rapidly growing machine learning techniques, it is apparent that utilizing these methods is necessary to achieve state-of-the-art performance in object detection. Recent novel approaches in the deep-learning field have boasted real-time object segmentation methods given the algorithm is connected to a large validation dataset. Knowing that these algorithms are restricted to a given dataset, it is apparent that the need for data generating algorithms is on a rise. As some object detection problems may suffice with a statically trained deep-learning model, it is true that others will not. Given the no free lunch theorem, we know that no machine learning algorithm can truly generalize to data it has not been trained on; therefore, deep learning models trained on images of cats will not necessarily classify dogs correctly. With modern deep learning libraries being ported for mobile devices, a wide range of utilityhas been made apparent for plant researchers around the world. One such usage of these real-time approaches is to count and classify seed kernels, replacing monotonous-human-error-ridden tasks. Plant scientists around the world have daily jobs of counting seeds by hand or using multi-thousand dollar devices to automate the task. It is apparent that many third world countries, where such consumer devices do not exist or require too many resources, could benefit from such an automated task. PhenoApps, an organization started within Kansas State University, has been supplying a subset of these countries with modern phones for such uses. With the following seed segmentation algorithm and the usage of modern mobile devices, scientists can count seeds with the click of a button and produce results in split-seconds. The algorithms proposed in this paper achieve multiple novel implementations. Mainly, Rice’s Theorem was used to show that object detection in clusters is an undecidable task for Turing Machines. Along with this, the novel implementations include an Android application which can segment seed kernels and a machine learning algorithm which can accurately generate contour data sets. The data generator provided in this paper is an effective start for the later usage of deep learning models and is the first step for a real-time dynamic and static seed counter. 
    more » « less