skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: Differentiating Contact with Symptomatic and Asymptomatic Infectious Individuals in a SEIR Epidemic Model
Abstract This manuscript introduces a new Erlang-distributed SEIR model. The model incorporates asymptomatic spread through a subdivided exposed class, distinguishing between asymptomatic ($$\hbox {E}_a$$ E a ) and symptomatic ($$\hbox {E}_s$$ E s ) cases. The model identifies two key parameters: relative infectiousness,$$\beta _{{SA}}$$ β SA , and the percentage of people who become asymptomatic after being infected by a symptomatic individual,$$\kappa $$ κ . Lower values of these parameters reduce the peak magnitude and duration of the infectious period, highlighting the importance of isolation measures. Additionally, the model underscores the need for strategies addressing both symptomatic and asymptomatic transmissions.  more » « less
Award ID(s):
1751339
PAR ID:
10582527
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Bulletin of Mathematical Biology
Volume:
87
Issue:
3
ISSN:
0092-8240
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Cuprous oxide ($$\hbox {Cu}{}_2\hbox {O}$$ Cu 2 O ) has recently emerged as a promising material in solid-state quantum technology, specifically for its excitonic Rydberg states characterized by large principal quantum numbers (n). The significant wavefunction size of these highly-excited states (proportional to$$n^2$$ n 2 ) enables strong long-range dipole-dipole (proportional to$$n^4$$ n 4 ) and van der Waals interactions (proportional to$$n^{11}$$ n 11 ). Currently, the highest-lying Rydberg states are found in naturally occurring$$\hbox {Cu}_2\hbox {O}$$ Cu 2 O . However, for technological applications, the ability to grow high-quality synthetic samples is essential. The fabrication of thin-film$$\hbox {Cu}{}_2\hbox {O}$$ Cu 2 O samples is of particular interest as they hold potential for observing extreme single-photon nonlinearities through the Rydberg blockade. Nevertheless, due to the susceptibility of high-lying states to charged impurities, growing synthetic samples of sufficient quality poses a substantial challenge. This study successfully demonstrates the CMOS-compatible synthesis of a$$\hbox {Cu}{}_2\hbox {O}$$ Cu 2 O thin film on a transparent substrate that showcases Rydberg excitons up to$$n = 8$$ n = 8 which is readily suitable for photonic device fabrications. These findings mark a significant advancement towards the realization of scalable and on-chip integrable Rydberg quantum technologies. 
    more » « less
  2. Abstract We prove that the Hilbert scheme ofkpoints on$${\mathbb {C}}^2$$ C 2 ($$\hbox {Hilb}^k[{\mathbb {C}}^2]$$ Hilb k [ C 2 ] ) is self-dual under three-dimensional mirror symmetry using methods of geometry and integrability. Namely, we demonstrate that the corresponding quantum equivariant K-theory is invariant upon interchanging its Kähler and equivariant parameters as well as inverting the weight of the$${\mathbb {C}}^\times _\hbar $$ C ħ × -action. First, we find a two-parameter family$$X_{k,l}$$ X k , l of self-mirror quiver varieties of type A and study their quantum K-theory algebras. The desired quantum K-theory of$$\hbox {Hilb}^k[{\mathbb {C}}^2]$$ Hilb k [ C 2 ] is obtained via direct limit$$l\longrightarrow \infty $$ l and by imposing certain periodic boundary conditions on the quiver data. Throughout the proof, we employ the quantum/classical (q-Langlands) correspondence between XXZ Bethe Ansatz equations and spaces of twisted$$\hbar $$ ħ -opers. In the end, we propose the 3d mirror dual for the moduli spaces of torsion-free rank-Nsheaves on$${\mathbb {P}}^2$$ P 2 with the help of a different (three-parametric) family of type A quiver varieties with known mirror dual. 
    more » « less
  3. Abstract Perfectly controlled molecules are at the forefront of the quest to explore chemical reactivity at ultra low temperatures. Here, we investigate for the first time the formation of the long-lived intermediates in the time-dependent scattering of cold bialkali$$^{23}\hbox {Na}^{87}$$ 23 Na 87 Rb molecules with and without the presence of infrared trapping light. During the nearly 50 nanoseconds mean collision time of the intermediate complex, we observe unconventional roaming when for a few tens of picoseconds either NaRb or$$\hbox {Na}_2$$ Na 2 and$$\hbox {Rb}_2$$ Rb 2 molecules with large relative separation are formed before returning to the four-atom complex. We also determine the likelihood of molecular loss when the trapping laser is present during the collision. We find that at a wavelength of 1064 nm the$$\hbox {Na}_2\hbox {Rb}_2$$ Na 2 Rb 2 complex is quickly destroyed and thus that the$$^{23}\hbox {Na}^{87}$$ 23 Na 87 Rb molecules are rapidly lost. 
    more » « less
  4. Abstract A model based on a$$U(1)_{T^3_R}$$ U ( 1 ) T R 3 extension of the Standard Model can address the mass hierarchy between generations of fermions, explain thermal dark matter abundance, and the muon$$g - 2$$ g - 2 ,$$R_{(D)}$$ R ( D ) , and$$R_{(D^*)}$$ R ( D ) anomalies. The model contains a light scalar boson$$\phi '$$ ϕ and a heavy vector-like quark$$\chi _\textrm{u}$$ χ u that can be probed at CERN’s large hadron collider (LHC). We perform a phenomenology study on the production of$$\phi '$$ ϕ and$${\chi }_u$$ χ u particles from proton–proton$$(\textrm{pp})$$ ( pp ) collisions at the LHC at$$\sqrt{s}=13.6$$ s = 13.6 TeV, primarily through$$g{-g}$$ g - g and$$t{-\chi _\textrm{u}}$$ t - χ u fusion. We work under a simplified model approach and directly take the$$\chi _\textrm{u}$$ χ u and$$\phi '$$ ϕ masses as free parameters. We perform a phenomenological analysis considering$$\chi _\textrm{u}$$ χ u final states to b-quarks, muons, and neutrinos, and$$\phi '$$ ϕ decays to$$\mu ^+\mu ^-$$ μ + μ - . A machine learning algorithm is used to maximize the signal sensitivity, considering an integrated luminosity of 3000$$\text {fb}^{-1}$$ fb - 1 . The proposed methodology can be a key mode for discovery over a large mass range, including low masses, traditionally considered difficult due to experimental constraints. 
    more » « less
  5. Abstract Fix a positive integernand a finite field$${\mathbb {F}}_q$$ F q . We study the joint distribution of the rank$${{\,\mathrm{rk}\,}}(E)$$ rk ( E ) , then-Selmer group$$\text {Sel}_n(E)$$ Sel n ( E ) , and then-torsion in the Tate–Shafarevich group Equation missing<#comment/>asEvaries over elliptic curves of fixed height$$d \ge 2$$ d 2 over$${\mathbb {F}}_q(t)$$ F q ( t ) . We compute this joint distribution in the largeqlimit. We also show that the “largeq, then large height” limit of this distribution agrees with the one predicted by Bhargava–Kane–Lenstra–Poonen–Rains. 
    more » « less