skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Soft and Stretchable Thienopyrroledione‐Based Polymers via Direct Arylation
Abstract π‐conjugated polymers (CPs) that are concurrently soft and stretchable are needed for deformable electronics. Molecular‐level modification of indacenodithiophene (IDT) copolymers, a class of CPs that exhibit high hole mobilities (hole), is an approach that can help realize intrinsically soft and stretchable CPs. Numerous examples of design strategies to adjust the stretchability of CPs exist, but imparting softness is comparatively less studied. In this study, a systematic molecular weight (MW) series is constructed on a promising candidate for soft CPs, poly(indacenodithiophene‐co‐thienopyrroledione) (p(IDTC16‐TPDC8)), by optimizing direct arylation polymerization conditions in hopes of improving stretchability andμholewithout significantly impacting softness. We found p(IDTC16‐TPDC8) at a degree of polymerization of 32 shows high stretchability (crack onset strain,CoS> 100%) without significantly impacting softness (elastic modulus,E= 32 MPa), which to the best of our knowledge outperforms previously reported stretchable and soft CPs. To further study how molecular‐level modifications impact polymer properties, a MW series of a new extended donor unit polymer, poly(indacenodithienothiophene‐co‐thienopyrroledione) (p(IDTTC16‐TPDC8)), was synthesized. The IDTTC16copolymers did not result in a greater averageμholewhen comparing between p(IDTTC16‐TPDC8) and p(IDTC16‐TPDC8) despite their higher crystallinity observed by GIWAXS. While these findings warrant further investigation, this study points toward unique charge transport properties of IDT‐based polymers.  more » « less
Award ID(s):
2047689
PAR ID:
10582529
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Advanced Electronic Materials
ISSN:
2199-160X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Wearable devices benefit from the use of stretchable conjugated polymers (CPs). Traditionally, the design of stretchable CPs is based on the assumption that a low elastic modulus (E) is crucial for achieving high stretchability. However, this research, which analyzes the mechanical properties of 65 CP thin films, challenges this notion. It is discovered that softness alone does not determine stretchability; rather, it is the degree of entanglement that is critical. This means that rigid CPs can also exhibit high stretchability, contradicting conventional wisdom. To inverstigate further, the mechanical behavior, electrical properties, and deformation mechanism of two model CPs: a glassy poly(3‐butylthiophene‐2,5‐diyl) (P3BT) with anEof 2.2 GPa and a viscoelastic poly(3‐octylthiophene‐2,5‐diyl) (P3OT) with anEof 86 MPa, are studied. Ex situ transmission X‐ray scattering and polarized UV–vis spectroscopy revealed that only the initial strain (i.e., <20%) exhibits different chain alignment mechanisms between two polymers, while both rigid and soft P3ATs showed similarly behavior at larger strains. By challenging the conventional design metric of lowEfor high stretchability and highlighting the importance of entanglement, it is hoped to broaden the range of CPs available for use in wearable devices. 
    more » « less
  2. Abstract Donor–acceptor (D–A)‐conjugated polymers have achieved promising performance metrics in numerous optoelectronic applications that continue to motivate studying structure–property relationships and discovering new materials. Here, the materials toolbox is expanded by synthesizing D–A copolymers where 1,4‐dihydropyrrolo[3,2‐b]pyrrole (DHPP) is directly incorporated into the main chain of D–A copolymers for the first time via direct heteroarylation polymerization. Notably, the synthetic complexity of DHPP‐containing polymers coupled with thieno[3,2‐b]pyrrole‐4,6‐dione (TPD) or 3,6‐bis(2‐thienyl)‐2,5‐dihydropyrrolo[3,4‐c]pyrrole‐1,4‐dione (Th2DPP) comonomers is calculated to be lower compared to many common conjugated polymers synthesized via direct arylation. The electron‐rich nature of DHPPs when coupled with TPD or DPP enables optoelectronic properties to be manipulated, evident by measuring distinctly different absorbance and redox properties. Additionally, these D–A copolymers demonstrate their potential in organic electronic applications, such as electrochromics and organic photovoltaics. The reported DHPP‐alt‐Th2DPP copolymer is the first DHPP‐based colored‐to‐transmissive electrochrome and achieves power conversion efficiencies of ~2.5% when incorporated into bulk heterojunction solar cells. Overall, the synthetic accessibility of DHPP monomers and their propensity to participate in robust polymerizations highlights the value of establishing structure–property relationships of an underutilized scaffold. These fundamental attributes serve to inform and advance efforts in the development of DHPP‐containing copolymers for various applications. 
    more » « less
  3. In order to apply polymer semiconductors to stretchable electronics, they need to be easily deformed under strain without being damaged. A small number of conjugated polymers, typically with semicrystalline packing structures, have been reported to exhibit mechanical stretchability. Herein, a method is reported to modify polymer semiconductor packing-structure using a molecular additive, dioctyl phthalate (DOP), which is found to act as a molecular spacer, to be inserted between the amorphous chain networks and disrupt the crystalline packing. As a result, large-crystal growth is suppressed while short-range aggregations of conjugated polymers are promoted, which leads to an improved mechanical stretchability without affecting charge-carrier transport. Due to the reduced conjugated polymer intermolecular interactions, strain-induced chain alignment and crystallization are observed. By adding DOP to a well-known conjugated polymer, poly[2,5-bis(4-decyltetradecyl)pyrrolo[3,4-c]pyrrole-1,4-(2H,5H)-dione-(E)-1,2-di(2,2′-bithiophen-5-yl)ethene] (DPPTVT), stretchable transistors are obtained with anisotropic charge-carrier mobilities under strain, and stable current output under strain up to 100%. 
    more » « less
  4. The effect of composition and morphology on mechanochemical activation in nanostructured block copolymers was investigated in a series of poly(methyl methacrylate)-block-poly(n-butyl acrylate)-block-poly(methyl methacrylate) (PMMA-b-PnBA-b-PMMA) triblock copolymers containing a force-responsive spiropyran unit in the center of the rubbery PnBA midblock. Triblock copolymers with identical PnBA midblocks and varying lengths of PMMA end-blocks were synthesized from a spiropyran-containing macroinitiatior via atom transfer radical polymerization, yielding polymers with volume fractions of PMMA ranging from 0.21 to 0.50. Characterization by transmission electron microscopy revealed that the polymers self-assembled into spherical and cylindrical nanostructures. Simultaneous tensile tests and optical measurements revealed that mechanochemical activation is strongly correlated to the chemical composition and morphologies of the triblock copolymers. As the glassy (PMMA) block content is increased, the overall activation increases, and the onset of activation occurs at lower strain but higher stress, which agrees with predictions from our previous computational work. These results suggest that the self-assembly of nanostructured morphologies can play an important role in controlling mechanochemical activation in polymeric materials and provide insights into how polymer composition and morphology impact molecular-scale force distributions. 
    more » « less
  5. null (Ed.)
    Development of highly stretchable and sensitive soft strain sensors is of great importance for broad applications in artificial intelligence, wearable devices, and soft robotics, but it proved to be a profound challenge to integrate the two seemingly opposite properties of high stretchability and sensitivity into a single material. Herein, we designed and synthesized a new fully polymeric conductive hydrogel with an interpenetrating polymer network (IPN) structure made of conductive PEDOT:PSS polymers and zwitterionic poly(HEAA- co -SBAA) polymers to achieve a combination of high mechanical, biocompatible, and sensing properties. The presence of hydrogen bonding, electrostatic interactions, and IPN structures enabled poly(HEAA- co -SBAA)/PEDOT:PSS hydrogels to achieve an ultra-high stretchability of 4000–5000%, a tensile strength of ∼0.5 MPa, a rapid mechanical recovery of 70–80% within 5 min, fast self-healing in 3 min, and a strong surface adhesion of ∼1700 J m −2 on different hard and soft substrates. Moreover, the integration of zwitterionic polySBAA and conductive PEDOT:PSS facilitated charge transfer via optimal conductive pathways. Due to the unique combination of superior stretchable, self-adhesive, and conductive properties, the hydrogels were further designed into strain sensors with high sensing stability and robustness for rapidly and accurately detecting subtle strain- and pressure-induced deformation and human motions. Moreover, an in-house mechanosensing platform provides a new tool to real-time explore the changes and relationship between network structures, tensile stress, and electronic resistance. This new fully polymeric hydrogel strain sensor, without any conductive fillers, holds great promise for broad human-machine interface applications. 
    more » « less