We present exact results that give insight into how interactions lead to transport and superconductivity in a flat band where the electrons have no kinetic energy. We obtain bounds for the optical spectral weight for flat-band superconductors that lead to upper bounds for the superfluid stiffness and the two-dimensional (2D) . We focus on on-site attraction on the Lieb lattice with trivial flat bands and on the π-flux model with topological flat bands. For trivial flat bands, the low-energy optical spectral weight with , where n is the flat-band density and Ω is the Marzari–Vanderbilt spread of the Wannier functions (WFs). We also obtain a lower bound involving the quantum metric. For topological flat bands, with an obstruction to localized WFs respecting all symmetries, we again obtain an upper bound for linear in . We discuss the insights obtained from our bounds by comparing them with mean-field and quantum Monte Carlo results. 
                        more » 
                        « less   
                    This content will become publicly available on December 10, 2025
                            
                            Bounds on the superconducting transition temperature
                        
                    
    
            I summarize recent progress on obtaining rigorous upper bounds on superconducting transition temperature [Formula: see text] in two dimensions independent of pairing mechanism or interaction strength. These results are derived by finding a general upper bound for the superfluid stiffness for a multi-band system with arbitrary interactions, with the only assumption that the external vector potential couples to the kinetic energy and not to the interactions. This bound is then combined with the universal relation between the superfluid stiffness and the Berezinskii–Kosterlitz–Thouless [Formula: see text] in 2D. For parabolic dispersion, one obtains the simple result that [Formula: see text], which has been tested in recent experiments. More generally, the bounds are expressed in terms of the optical spectral weight and lead to stringent constraints for the [Formula: see text] of low-density, strongly correlated superconductors. Results for [Formula: see text] bounds for models of flat-band superconductors, where the kinetic energy vanishes and the vector potential must couple to interactions, are briefly summarized. Upper bounds on [Formula: see text] in 3D remains an open problem, and I describe how questions of universality underlie the challenges in 3D. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2011876
- PAR ID:
- 10582594
- Publisher / Repository:
- World Scientific Connect
- Date Published:
- Journal Name:
- Modern Physics Letters B
- Volume:
- 38
- Issue:
- 34
- ISSN:
- 0217-9849
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Abstract Superfluid 3 He, with unconventional spin-triplet p-wave pairing, provides a model system for topological superconductors, which have attracted significant interest through potential applications in topologically protected quantum computing. In topological insulators and quantum Hall systems, the surface/edge states, arising from bulk-surface correspondence and the momentum space topology of the band structure, are robust. Here we demonstrate that in topological superfluids and superconductors the surface Andreev bound states, which depend on the momentum space topology of the emergent order parameter, are fragile with respect to the details of surface scattering. We confine superfluid 3 He within a cavity of height D comparable to the Cooper pair diameter ξ 0 . We precisely determine the superfluid transition temperature T c and the suppression of the superfluid energy gap, for different scattering conditions tuned in situ, and compare to the predictions of quasiclassical theory. We discover that surface magnetic scattering leads to unexpectedly large suppression of T c , corresponding to an increased density of low energy bound states.more » « less
- 
            null (Ed.)We propose an Euler transformation that transforms a given [Formula: see text]-dimensional cell complex [Formula: see text] for [Formula: see text] into a new [Formula: see text]-complex [Formula: see text] in which every vertex is part of the same even number of edges. Hence every vertex in the graph [Formula: see text] that is the [Formula: see text]-skeleton of [Formula: see text] has an even degree, which makes [Formula: see text] Eulerian, i.e., it is guaranteed to contain an Eulerian tour. Meshes whose edges admit Eulerian tours are crucial in coverage problems arising in several applications including 3D printing and robotics. For [Formula: see text]-complexes in [Formula: see text] ([Formula: see text]) under mild assumptions (that no two adjacent edges of a [Formula: see text]-cell in [Formula: see text] are boundary edges), we show that the Euler transformed [Formula: see text]-complex [Formula: see text] has a geometric realization in [Formula: see text], and that each vertex in its [Formula: see text]-skeleton has degree [Formula: see text]. We bound the numbers of vertices, edges, and [Formula: see text]-cells in [Formula: see text] as small scalar multiples of the corresponding numbers in [Formula: see text]. We prove corresponding results for [Formula: see text]-complexes in [Formula: see text] under an additional assumption that the degree of a vertex in each [Formula: see text]-cell containing it is [Formula: see text]. In this setting, every vertex in [Formula: see text] is shown to have a degree of [Formula: see text]. We also present bounds on parameters measuring geometric quality (aspect ratios, minimum edge length, and maximum angle of cells) of [Formula: see text] in terms of the corresponding parameters of [Formula: see text] for [Formula: see text]. Finally, we illustrate a direct application of the proposed Euler transformation in additive manufacturing.more » « less
- 
            World Scientific (Ed.)In general, it is difficult to measure distances in the Weil–Petersson metric on Teichmüller space. Here we consider the distance between strata in the Weil–Petersson completion of Teichmüller space of a surface of finite type. Wolpert showed that for strata whose closures do not intersect, there is a definite separation independent of the topology of the surface. We prove that the optimal value for this minimal separation is a constant [Formula: see text] and show that it is realized exactly by strata whose nodes intersect once. We also give a nearly sharp estimate for [Formula: see text] and give a lower bound on the size of the gap between [Formula: see text] and the other distances. A major component of the paper is an effective version of Wolpert’s upper bound on [Formula: see text], the inner product of the Weil–Petersson gradient of length functions. We further bound the distance to the boundary of Teichmüller space of a hyperbolic surface in terms of the length of the systole of the surface. We also obtain new lower bounds on the systole for the Weil–Petersson metric on the moduli space of a punctured torus.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
