skip to main content


Title: Strata separation for the Weil–Petersson completion and gradient estimates for length functions
In general, it is difficult to measure distances in the Weil–Petersson metric on Teichmüller space. Here we consider the distance between strata in the Weil–Petersson completion of Teichmüller space of a surface of finite type. Wolpert showed that for strata whose closures do not intersect, there is a definite separation independent of the topology of the surface. We prove that the optimal value for this minimal separation is a constant [Formula: see text] and show that it is realized exactly by strata whose nodes intersect once. We also give a nearly sharp estimate for [Formula: see text] and give a lower bound on the size of the gap between [Formula: see text] and the other distances. A major component of the paper is an effective version of Wolpert’s upper bound on [Formula: see text], the inner product of the Weil–Petersson gradient of length functions. We further bound the distance to the boundary of Teichmüller space of a hyperbolic surface in terms of the length of the systole of the surface. We also obtain new lower bounds on the systole for the Weil–Petersson metric on the moduli space of a punctured torus.  more » « less
Award ID(s):
2005498 1564410
NSF-PAR ID:
10340730
Author(s) / Creator(s):
;
Editor(s):
World Scientific
Date Published:
Journal Name:
Journal of Topology and Analysis
ISSN:
1793-5253
Page Range / eLocation ID:
1 to 33
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In this paper, we construct examples of Weil–Petersson geodesics with nonminimal ending laminations which have [Formula: see text]-dimensional limit sets in the Thurston compactification of Teichmüller space. 
    more » « less
  2. De Gruyter (Ed.)
    In this article we show that for every finite area hyperbolic surface X of type (g; n) and any harmonic Beltrami differential 􏰚 on X , then the magnitude of 􏰚 at any point of small injectivity radius is uniform bounded from above by the ratio of the Weil–Petersson norm of 􏰚 over the square root of the systole of X up to a uniform positive constant multiplication. We apply the uniform bound above to show that the Weil–Petersson Ricci curvature, restricted at any hyperbolic surface of short systole in the moduli space, is uniformly bounded from below by the negative reciprocal of the systole up to a uniform positive constant multiplication. As an application, we show that the average total Weil–Petersson scalar curvature over the moduli space is uniformly comparable to -g as the genus g goes to infinity. 
    more » « less
  3. We consider the problem of designing sublinear time algorithms for estimating the cost of minimum] metric traveling salesman (TSP) tour. Specifically, given access to a n × n distance matrix D that specifies pairwise distances between n points, the goal is to estimate the TSP cost by performing only sublinear (in the size of D) queries. For the closely related problem of estimating the weight of a metric minimum spanning tree (MST), it is known that for any epsilon > 0, there exists an O^~(n/epsilon^O(1))-time algorithm that returns a (1+epsilon)-approximate estimate of the MST cost. This result immediately implies an O^~(n/epsilon^O(1)) time algorithm to estimate the TSP cost to within a (2 + epsilon) factor for any epsilon > 0. However, no o(n^2)-time algorithms are known to approximate metric TSP to a factor that is strictly better than 2. On the other hand, there were also no known barriers that rule out existence of (1 + epsilon)-approximate estimation algorithms for metric TSP with O^~ (n) time for any fixed epsilon > 0. In this paper, we make progress on both algorithms and lower bounds for estimating metric TSP cost. On the algorithmic side, we first consider the graphic TSP problem where the metric D corresponds to shortest path distances in a connected unweighted undirected graph. We show that there exists an O^~(n) time algorithm that estimates the cost of graphic TSP to within a factor of (2 − epsilon_0) for some epsilon_0 > 0. This is the first sublinear cost estimation algorithm for graphic TSP that achieves an approximation factor less than 2. We also consider another well-studied special case of metric TSP, namely, (1, 2)-TSP where all distances are either 1 or 2, and give an O^~(n ^ 1.5) time algorithm to estimate optimal cost to within a factor of 1.625. Our estimation algorithms for graphic TSP as well as for (1, 2)-TSP naturally lend themselves to O^~(n) space streaming algorithms that give an 11/6-approximation for graphic TSP and a 1.625-approximation for (1, 2)-TSP. These results motivate the natural question if analogously to metric MST, for any epsilon > 0, (1 + epsilon)-approximate estimates can be obtained for graphic TSP and (1, 2)-TSP using O^~ (n) queries. We answer this question in the negative – there exists an epsilon_0 > 0, such that any algorithm that estimates the cost of graphic TSP ((1, 2)-TSP) to within a (1 + epsilon_0)-factor, necessarily requires (n^2) queries. This lower bound result highlights a sharp separation between the metric MST and metric TSP problems. Similarly to many classical approximation algorithms for TSP, our sublinear time estimation algorithms utilize subroutines for estimating the size of a maximum matching in the underlying graph. We show that this is not merely an artifact of our approach, and that for any epsilon > 0, any algorithm that estimates the cost of graphic TSP or (1, 2)-TSP to within a (1 + epsilon)-factor, can also be used to estimate the size of a maximum matching in a bipartite graph to within an epsilon n additive error. This connection allows us to translate known lower bounds for matching size estimation in various models to similar lower bounds for metric TSP cost estimation. 
    more » « less
  4. Abstract

    We obtain a new formula for the Loewner energy of Jordan curves on the sphere, which is a Kähler potential for the essentially unique Kähler metric on the Weil–Petersson universal Teichmüller space, as the renormalised energy of moving frames on the two domains of the sphere delimited by the given curve.

     
    more » « less
  5. Starting with a vertex-weighted pointed graph [Formula: see text], we form the free loop algebra [Formula: see text] defined in Hartglass–Penneys’ article on canonical [Formula: see text]-algebras associated to a planar algebra. Under mild conditions, [Formula: see text] is a non-nuclear simple [Formula: see text]-algebra with unique tracial state. There is a canonical polynomial subalgebra [Formula: see text] together with a Dirac number operator [Formula: see text] such that [Formula: see text] is a spectral triple. We prove the Haagerup-type bound of Ozawa–Rieffel to verify [Formula: see text] yields a compact quantum metric space in the sense of Rieffel.

    We give a weighted analog of Benjamini–Schramm convergence for vertex-weighted pointed graphs. As our [Formula: see text]-algebras are non-nuclear, we adjust the Lip-norm coming from [Formula: see text] to utilize the finite dimensional filtration of [Formula: see text]. We then prove that convergence of vertex-weighted pointed graphs leads to quantum Gromov–Hausdorff convergence of the associated adjusted compact quantum metric spaces.

    As an application, we apply our construction to the Guionnet–Jones–Shyakhtenko (GJS) [Formula: see text]-algebra associated to a planar algebra. We conclude that the compact quantum metric spaces coming from the GJS [Formula: see text]-algebras of many infinite families of planar algebras converge in quantum Gromov–Hausdorff distance.

     
    more » « less