skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nanoscale imaging of Gilbert damping using signal amplitude mapping
Ferromagnetic resonance force microscopy (FMRFM) is a powerful scanned probe technique that uses sub-micrometer-scale, spatially localized standing spin wave modes (LMs) to perform local ferromagnetic resonance (FMR) measurements. Here, we show the spatially resolved imaging of Gilbert damping in a ferromagnetic material (FM) using FMRFM. Typically damping is measured from the FMR linewidth. We demonstrate an approach to image the spatial variation of Gilbert damping utilizing the LM resonance peak height to measure the LM resonance cone angle. This approach enables determination of damping through field-swept FMRFM at a single excitation frequency. The extreme force sensitivity of ∼2 fN at room temperature can resolve changes of Gilbert damping as small as ∼2×10−4 at 2 GHz, corresponding to ∼0.16 Oe in FMR linewidth resolution. This high sensitivity, high spatial resolution, and single frequency imaging of Gilbert damping creates the opportunity to study spin interactions at the interface between an insulating FM and a small volume of nonmagnetic material such as atomically thin two-dimensional materials.  more » « less
Award ID(s):
2011876
PAR ID:
10582620
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
AIP
Date Published:
Journal Name:
Applied Physics Letters
Volume:
118
Issue:
4
ISSN:
0003-6951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Spin-torque ferromagnetic resonance (ST-FMR) has been widely used for measuring damping-like spin–orbit torques in magnetic bilayers. Typically, the ratio between the damping-like and field-like spin–orbit torques are extrapolated based on the ferromagnetic resonance line shapes. However, when the field-like spin–orbit torque is unknown, the line shape analysis may lead to errors in extrapolating the damping-like spin–orbit torque. Here, we propose a modified version of the ST-FMR that allows extrapolation of both damping-like and field-like torques independently. By introducing an alternating current to the sample, the RF impedance is modulated, allowing detection via the reflected microwave. We show that the extrapolated field-like and damping-like torques in Py/Pt samples are consistent with the technique measuring current-induced linewidth and resonance field change but have much better signal-to-noise ratio. Our proposed method paves a way for more accurate measurement of spin–orbit torques. 
    more » « less
  2. We demonstrate indirect electric-field control of ferromagnetic resonance (FMR) in devices that integrate the low-loss, molecule-based, room-temperature ferrimagnet vanadium tetracyanoethylene (V[TCNE]x∼2) mechanically coupled to PMN-PT piezoelectric transducers. Upon straining the V[TCNE]x films, the FMR frequency is tuned by more than 6 times the resonant linewidth with no change in Gilbert damping for samples with α = 6.5 × 10−5. We show this tuning effect is due to a strain-dependent magnetic anisotropy in the films and find the magnetoelastic coefficient |λs| ∼ (1–4.4) ppm, backed by theoretical predictions from density-functional theory calculations and magnetoelastic theory. Noting the rapidly expanding application space for strain-tuned FMR, we define a new metric for magnetostrictive materials, magnetostrictive agility, given by the ratio of the magnetoelastic coefficient to the FMR linewidth. This agility allows for a direct comparison between magnetostrictive materials in terms of their comparative efficacy for magnetoelectric applications requiring ultra-low loss magnetic resonance modulated by strain. With this metric, we show V[TCNE]x is competitive with other magnetostrictive materials, including YIG and Terfenol-D. This combination of ultra-narrow linewidth and magnetostriction, in a system that can be directly integrated into functional devices without requiring heterogeneous integration in a thin film geometry, promises unprecedented functionality for electric-field tuned microwave devices ranging from low-power, compact filters and circulators to emerging applications in quantum information science and technology. 
    more » « less
  3. Complex ferromagnetic oxides have been identified as possible candidate materials for sources of spin currents. Here we study bilayers of ferromagnetic (La2/3Sr1/3)MnO3 (LSMO) and metallic CaRuO3 (CRO) on LSAT substrates as a model system for spin pumping. Ferromagnetic resonance (FMR) measurements of these bilayers show evidence of spin pumping across the interface in the form of an increase in Gilbert damping with the addition of CRO. FMR indicates that the presence of CRO modifies the magnetic anisotropy of the LSMO. By increasing CRO thickness, we find a reduction of the out-of-plane anisotropy and simultaneous rotation of the easy axis within the plane, from the ⟨110⟩ to ⟨100⟩ axis. The evolution of magnetic anisotropy determined by FMR disagrees with that measured by bulk SQUID magnetometry and is accompanied by structural distortions in the LSMO layer as measured by x-ray diffraction, thus suggesting a change in magnetic anisotropy attributed to structural distortions imposed on LSMO by CRO. These results suggest that while LSMO and CRO remain promising candidates for efficient pure spin current generation and detection, respectively, epitaxial integration of perovskites will cause additional changes which must be accounted for in spintronics applications. 
    more » « less
  4. Ferromagnetic resonance (FMR) is a broadly used dynamical measurement used to characterize a wide range of magnetic materials. Applied research and development on magnetic thin film materials is growing rapidly alongside a growing commercial appetite for magnetic memory and computing technologies. The ability to execute high-quality, fast FMR surveys of magnetic thin films is needed to meet the demanding throughput associated with rapid materials exploration and quality control. Here, we implement optimal Bayesian experimental design software developed by [McMichael et al. J. Res. Natl. Inst. Stand. Technol. 126, 126002 (2021)] in a vector network analyzer-FMR setup to demonstrate an unexplored opportunity to accelerate FMR measurements. A systematic comparison is made between the optimal Bayesian measurement and the conventional measurement. Reduced uncertainties in the linewidth and resonance frequency ranging from 40% to 60% are achieved with the Bayesian implementation for the same measurement duration. In practical terms, this approach reaches a target uncertainty of ±5 MHz for the linewidth and ±1 MHz for the resonance frequency in 2.5× less time than the conventional approach. As the optimal Bayesian approach only decreases random errors, we evaluate how large systematic errors may limit the full advantage of the optimal Bayesian approach. This approach can be used to deliver gains in measurement speed by a factor of 3 or more and as a software add-on has the flexibility to be added on to any FMR measurement system to accelerate materials discovery and quality control measurements, alike. 
    more » « less
  5. Two-dimensional van der Waals (vdWs) materials have gathered a lot of attention recently. However, the majority of these materials have Curie temperatures that are well below room temperature, making it challenging to incorporate them into device applications. In this work, we synthesized a room-temperature vdW magnetic crystal Fe5GeTe2 with a Curie temperature T$$_c = 332$$ K, and studied its magnetic properties by vibrating sample magnetometry (VSM) and broadband ferromagnetic resonance (FMR) spectroscopy. The experiments were performed with external magnetic fields applied along the c-axis (H$$\parallel$$c) and the ab-plane (H$$\parallel$$ab), with temperatures ranging from 300 to 10 K. We have found a sizable Landé g-factor difference between the H$$\parallel$$c and H$$\parallel$$ab cases. In both cases, the Landé g-factor values deviated from g = 2. This indicates contribution of orbital angular momentum to the magnetic moment. The FMR measurements reveal that Fe5GeTe2 has a damping constant comparable to Permalloy. With reducing temperature, the linewidth was broadened. Together with the VSM data, our measurements indicate that Fe5GeTe2 transitions from ferromagnetic to ferrimagnetic at lower temperatures. Our experiments highlight key information regarding the magnetic state and spin scattering processes in Fe5GeTe2, which promote the understanding of magnetism in Fe5GeTe2, leading to implementations of Fe5GeTe2 based room-temperature spintronic devices. 
    more » « less