Integrating patterned, low-loss magnetic materials into microwave devices and circuits presents many challenges due to the specific conditions that are required to grow ferrite materials, driving the need for flip-chip and other indirect fabrication techniques. The low-loss (α = (3.98 ± 0.22) × 10−5), room-temperature ferrimagnetic coordination compound vanadium tetracyanoethylene (V[TCNE]x) is a promising new material for these applications that is potentially compatible with semiconductor processing. Here, we present the deposition, patterning, and characterization of V[TCNE]x thin films with lateral dimensions ranging from 1 μm to several millimeters. We employ electron-beam lithography and liftoff using an aluminum encapsulated poly(methyl methacrylate), poly(methyl methacrylate-methacrylic acid) copolymer bilayer [PMMA/P(MMA-MAA)] on sapphire and silicon. This process can be trivially extended to other common semiconductor substrates. Films patterned via this method maintain low-loss characteristics down to 25 μm with only a factor of 2 increase down to 5 μm. A rich structure of thickness and radially confined spin-wave modes reveals the quality of the patterned films. Further fitting, simulation, and analytic analysis provide an exchange stiffness, Aex = (2.2 ± 0.5) × 10−10erg/cm, as well as insights into the mode character and surface-spin pinning. Below a micron, the deposition is nonconformal, which leads to interesting and potentially useful changes in morphology. This work establishes the versatility of V[TCNE]x for applications requiring highly coherent magnetic excitations ranging from microwave communication to quantum information. 
                        more » 
                        « less   
                    
                            
                            In situ electric-field control of ferromagnetic resonance in the low-loss organic-based ferrimagnet V[TCNE] x ∼2
                        
                    
    
            We demonstrate indirect electric-field control of ferromagnetic resonance (FMR) in devices that integrate the low-loss, molecule-based, room-temperature ferrimagnet vanadium tetracyanoethylene (V[TCNE]x∼2) mechanically coupled to PMN-PT piezoelectric transducers. Upon straining the V[TCNE]x films, the FMR frequency is tuned by more than 6 times the resonant linewidth with no change in Gilbert damping for samples with α = 6.5 × 10−5. We show this tuning effect is due to a strain-dependent magnetic anisotropy in the films and find the magnetoelastic coefficient |λs| ∼ (1–4.4) ppm, backed by theoretical predictions from density-functional theory calculations and magnetoelastic theory. Noting the rapidly expanding application space for strain-tuned FMR, we define a new metric for magnetostrictive materials, magnetostrictive agility, given by the ratio of the magnetoelastic coefficient to the FMR linewidth. This agility allows for a direct comparison between magnetostrictive materials in terms of their comparative efficacy for magnetoelectric applications requiring ultra-low loss magnetic resonance modulated by strain. With this metric, we show V[TCNE]x is competitive with other magnetostrictive materials, including YIG and Terfenol-D. This combination of ultra-narrow linewidth and magnetostriction, in a system that can be directly integrated into functional devices without requiring heterogeneous integration in a thin film geometry, promises unprecedented functionality for electric-field tuned microwave devices ranging from low-power, compact filters and circulators to emerging applications in quantum information science and technology. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10595150
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- APL Materials
- Volume:
- 12
- Issue:
- 5
- ISSN:
- 2166-532X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Spin waves, quantized as magnons, have low energy loss and magnetic damping, which are critical for devices based on spin‐wave propagation needed for information processing devices. The organic‐based magnet [V(TCNE)x; TCNE = tetracyanoethylene;x≈ 2] has shown an extremely low magnetic damping comparable to, for example, yttrium iron garnet (YIG). The excitation, detection, and utilization of coherent and non‐coherent spin waves on various modes in V(TCNE)xis demonstrated and show that the angular momentum carried by microwave‐excited coherent spin waves in a V(TCNE)xfilm can be transferred into an adjacent Pt layer via spin pumping and detected using the inverse spin Hall effect. The spin pumping efficiency can be tuned by choosing different excited spin wave modes in the V(TCNE)xfilm. In addition, it is shown that non‐coherent spin waves in a V(TCNE)xfilm, excited thermally via the spin Seebeck effect, can also be used as spin pumping source that generates an electrical signal in Pt with a sign change in accordance with the magnetization switching of the V(TCNE)x. Combining coherent and non‐coherent spin wave detection, the spin pumping efficiency can be thermally controlled, and new insight is gained for the spintronic applications of spin wave modes in organic‐based magnets.more » « less
- 
            The molecule-based ferrimagnetic semiconductor vanadium tetracyanoethylene (V[TCNE]x, x ≈ 2) has garnered interest from the quantum information community due to its excellent coherent magnonic properties and ease of on-chip integration. Despite these attractive properties, a detailed understanding of the electronic structure and mechanism for long-range magnetic ordering have remained elusive due to a lack of detailed atomic and electronic structural information. Previous studies via x-ray absorption near edge spectroscopy and the extended x-ray absorption fine structure have led to various proposed structures, and in general, V[TCNE]x is believed to be a three-dimensional network of octahedrally coordinated V2+, each bonded to six TCNE molecules. Here, we elucidate the electronic structure, structural ordering, and degradation pathways of V[TCNE]x films by correlating calculations of density functional theory (DFT) with scanning transmission electron microscopy and electron energy-loss spectroscopy (EELS) of V[TCNE]x films. Low-loss EELS measurements reveal a bandgap and an excited state structure that agree quantitatively with DFT modeling, including an energy splitting between apical and equatorial TCNE ligands within the structure, providing experimental results directly backed by theoretical descriptions of the electronic structure driving the robust magnetic ordering in these films. Core-loss EELS confirms the presence of octahedrally coordinated V+2 atoms. Upon oxidation, changes in the C1s-π* peak indicate that C=C of TCNE is preferentially attacked. Furthermore, we identify a relaxation of the structural ordering as the films age. These results lay the foundation for a more comprehensive and fundamental understanding of magnetic ordering and dynamics in these classes of metal–ligand compounds.more » « less
- 
            The development of magnetic logic devices dictates a need for a novel type of interconnect for magnetic signal transmission. Fast signal damping is one of the problems which drastically differs from conventional electric technology. Here, we describe a magnetic interconnect based on a composite multiferroic comprising piezoelectric and magnetostrictive materials. Internal signal amplification is the main reason for using multiferroic material, where a portion of energy can be transferred from electric to magnetic domains via stress-mediated coupling. The utilization of composite multiferroics consisting of piezoelectric and magnetostrictive materials offers flexibility for the separate adjustment of electric and magnetic characteristics. The structure of the proposed interconnect resembles a parallel plate capacitor filled with a piezoelectric, where one of the plates comprises a magnetoelastic material. An electric field applied across the plates of the capacitor produces stress, which, in turn, affects the magnetic properties of the magnetostrictive material. The charging of the capacitor from one edge results in the charge diffusion accompanied by the magnetization change in the magnetostrictive layer. This enables the amplitude of the magnetic signal to remain constant during the propagation. The operation of the proposed interconnects is illustrated by numerical modeling. The model is based on the Landau–Lifshitz–Gilbert equation with the electric field-dependent anisotropy term included. A variety of magnetic logic devices and architectures can benefit from the proposed interconnects, as they provide reliable and low-energy-consuming data transmission. According to the estimates, the group velocity of magnetic signals may be up to 105 m/s with energy dissipation less than 10−18 J per bit per 100 nm. The physical limits and practical challenges of the proposed approach are also discussed.more » « less
- 
            Ferromagnetic resonance (FMR) is a broadly used dynamical measurement used to characterize a wide range of magnetic materials. Applied research and development on magnetic thin film materials is growing rapidly alongside a growing commercial appetite for magnetic memory and computing technologies. The ability to execute high-quality, fast FMR surveys of magnetic thin films is needed to meet the demanding throughput associated with rapid materials exploration and quality control. Here, we implement optimal Bayesian experimental design software developed by [McMichael et al. J. Res. Natl. Inst. Stand. Technol. 126, 126002 (2021)] in a vector network analyzer-FMR setup to demonstrate an unexplored opportunity to accelerate FMR measurements. A systematic comparison is made between the optimal Bayesian measurement and the conventional measurement. Reduced uncertainties in the linewidth and resonance frequency ranging from 40% to 60% are achieved with the Bayesian implementation for the same measurement duration. In practical terms, this approach reaches a target uncertainty of ±5 MHz for the linewidth and ±1 MHz for the resonance frequency in 2.5× less time than the conventional approach. As the optimal Bayesian approach only decreases random errors, we evaluate how large systematic errors may limit the full advantage of the optimal Bayesian approach. This approach can be used to deliver gains in measurement speed by a factor of 3 or more and as a software add-on has the flexibility to be added on to any FMR measurement system to accelerate materials discovery and quality control measurements, alike.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
