skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bridging Ecology and Microbiomes: Applying Ecological Theories in Host-associated Microbial Ecosystems
Abstract Purpose of ReviewThis review explores the application of classical ecological theory to host-associated microbiomes during initial colonization, maintenance, and recovery. We discuss unique challenges of applying these theories to host-associated microbiomes and host factors to consider going forward. Recent FindingsRecent studies applying community ecology principles to host microbiomes continue to demonstrate a role for both selective and stochastic processes in shaping host-associated microbiomes. However, ecological frameworks developed to describe dynamics during homeostasis do not necessarily apply during diseased or highly perturbed states, where large variations can potentially lead to alternate stable states. SummaryDespite providing valuable insights, the application of ecological theories to host-associated microbiomes has some unique challenges. The integration of host-specific factors, such as genotype or immune dynamics in ecological models or frameworks is crucial for understanding host microbiome assembly and stability, which could improve our ability to predict microbiome outcomes and improve host health.  more » « less
Award ID(s):
2025541
PAR ID:
10582657
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Current Clinical Microbiology Reports
Volume:
12
Issue:
1
ISSN:
2196-5471
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Microbiomes have profound effects on host fitness, yet we struggle to understand the implications for host ecology. Microbiome influence on host ecology has been investigated using two independent frameworks. Classical ecological theory powerfully represents mechanistic interactions predicting environmental dependence of microbiome effects on host ecology, but these models are notoriously difficult to evaluate empirically. Alternatively, host–microbiome feedback theory represents impacts of microbiome dynamics on host fitness as simple net effects that are easily amenable to experimental evaluation. The feedback framework enabled rapid progress in understanding microbiomes’ impacts on plant ecology, and can also be applied to animal hosts. We conceptually integrate these two frameworks by deriving expressions for net feedback in terms of mechanistic model parameters. This generates a precise mapping between net feedback theory and classic population modelling, thereby merging mechanistic understanding with experimental tractability, a necessary step for building a predictive understanding of microbiome influence on host ecology. 
    more » « less
  2. Abstract Microbiomes are essential features of holobionts, providing their hosts with key metabolic and functional traits like resistance to environmental disturbances and diseases. In scleractinian corals, questions remain about the microbiome's role in resistance and resilience to factors contributing to the ongoing global coral decline and whether microbes serve as a form of holobiont ecological memory. To test if and how coral microbiomes affect host health outcomes during repeated disturbances, we conducted a large‐scale (32 exclosures, 200 colonies, and 3 coral species sampled) and long‐term (28 months, 2018–2020) manipulative experiment on the forereef of Mo'orea, French Polynesia. In 2019 and 2020, this reef experienced the two most severe marine heatwaves on record for the site. Our experiment and these events afforded us the opportunity to test microbiome dynamics and roles in the context of coral bleaching and mortality resulting from these successive and severe heatwaves. We report unique microbiome responses to repeated heatwaves inAcropora retusa,Porites lobata, andPocilloporaspp., which included: microbiome acclimatization inA. retusa, and both microbiome resilience to the first marine heatwave and microbiome resistance to the second marine heatwave inPocilloporaspp. Moreover, observed microbiome dynamics significantly correlated with coral species‐specific phenotypes. For example, bleaching and mortality inA. retusaboth significantly increased with greater microbiome beta dispersion and greater Shannon Diversity, whileP. lobatacolonies had different microbiomes across mortality prevalence. Compositional microbiome changes, such as changes to proportions of differentially abundant putatively beneficial to putatively detrimental taxa to coral health outcomes during repeated heat stress, also correlated with host mortality, with higher proportions of detrimental taxa yielding higher mortality inA. retusa. This study reveals evidence for coral species‐specific microbial responses to repeated heatwaves and, importantly, suggests that host‐dependent microbiome dynamics may provide a form of holobiont ecological memory to repeated heat stress. 
    more » « less
  3. Tortosa, Pablo (Ed.)
    ABSTRACT Bacteria shape interactions between hosts and fungal pathogens. In some cases, bacteria associated with fungi are essential for pathogen virulence. In other systems, host-associated microbiomes confer resistance against fungal pathogens. We studied an aphid-specific entomopathogenic fungus calledPandora neoaphidisin the context of both host and pathogen microbiomes. Aphids host several species of heritable bacteria, some of which confer resistance againstPandora. We first found that spores that emerged from aphids that harbored protective bacteria were less virulent against subsequent hosts and did not grow on plate media. We then used 16S amplicon sequencing to study the bacterial microbiome of fungal mycelia and spores during plate culturing and host infection. We found that the bacterial community is remarkably stable in culture despite dramatic changes in pathogen virulence. Last, we used an experimentally transformed symbiont of aphids to show thatPandoracan acquire host-associated bacteria during infection. Our results uncover new roles for bacteria in the dynamics of aphid-pathogen interactions and illustrate the importance of the broader microbiological context in studies of fungal pathogenesis. IMPORTANCEEntomopathogenic fungi play important roles in the population dynamics of many insect species. Understanding the factors shaping entomopathogen virulence is critical for agricultural management and for the use of fungi in pest biocontrol. We show that heritable bacteria in aphids, which confer protection to their hosts against fungal entomopathogens, influence virulence against subsequent hosts. Aphids reproduce asexually and are typically surrounded by genetically identical offspring, and thus these effects likely shape the dynamics of fungal disease in aphid populations. Furthermore, fungal entomopathogens are known to rapidly lose virulence in lab culture, complicating their laboratory use. We show that this phenomenon is not driven by changes in the associated bacterial microbiome. These results contribute to our broader understanding of the aphid model system and shed light on the biology of the Entomophthorales—an important but understudied group of fungi. 
    more » « less
  4. ObjectiveWe aimed to identify opportunities for application of human factors knowledge base to mitigate disaster management (DM) challenges associated with the unique characteristics of the COVID-19 pandemic. BackgroundThe role of DM is to minimize and prevent further spread of the contagion over an extended period of time. This requires addressing large-scale logistics, coordination, and specialized training needs. However, DM-related challenges during the pandemic response and recovery are significantly different than with other kinds of disasters. MethodAn expert review was conducted to document issues relevant to human factors and ergonomics (HFE) in DM. ResultsThe response to the COVID-19 crisis has presented complex and unique challenges to DM and public health practitioners. Compared to other disasters and previous pandemics, the COVID-19 outbreak has had an unprecedented scale, magnitude, and propagation rate. The high technical complexity of response and DM coupled with lack of mental model and expertise to respond to such a unique disaster has seriously challenged the response work systems. Recent research has investigated the role of HFE in modeling DM systems’ characteristics to improve resilience, accelerating emergency management expertise, developing agile training methods to facilitate dynamically changing response, improving communication and coordination among system elements, mitigating occupational hazards including guidelines for the design of personal protective equipment, and improving procedures to enhance efficiency and effectiveness of response efforts. ConclusionThis short review highlights the potential for the field’s contribution to proactive and resilient DM for the ongoing and future pandemics. 
    more » « less
  5. Abstract Hybridization between organisms from evolutionarily distinct lineages can have profound consequences on organismal ecology, with cascading effects on fitness and evolution. Most studies of hybrid organisms have focused on organismal traits, for example, various aspects of morphology and physiology. However, with the recent emergence of holobiont theory, there has been growing interest in understanding how hybridization impacts and is impacted by host‐associated microbiomes. Better understanding of the interplay between host hybridization and host‐associated microbiomes has the potential to provide insight into both the roles of host‐associated microbiomes as dictators of host performance as well as the fundamental rules governing host‐associated microbiome assembly. Unfortunately, there is a current lack of frameworks for understanding the structure of host‐associated microbiomes of hybrid organisms.In this paper, we develop four conceptual models describing possible relationships between the host‐associated microbiomes of hybrids and their progenitor or ‘parent’ taxa. We then integrate these models into a quantitative ‘4H index’ and present a new R package for calculation, visualization and analysis of this index.We demonstrate how the 4H index can be used to compare hybrid microbiomes across disparate plant and animal systems. Our analyses of these data sets show variation in the 4H index across systems based on host taxonomy, host site and microbial taxonomic group.Our four conceptual models, paired with our 4H index and associated visualization tools, facilitate comparison across hybrid systems. This, in turn, allows for systematic exploration of how different aspects of host hybridization impact the host‐associated microbiomes of hybrid organisms. 
    more » « less