A comprehensive understanding of heat transfer mechanisms and hydrodynamics during droplet impingement on a heated surface and subsequent evaporation is crucial for improving heat transfer models, optimizing surface engineering, and maximizing overall effectiveness. This work showcases findings related to heat transfer mechanisms and simultaneous tracking of the moving contact line (MCL) for subcooled impinging droplets across a range of surface temperatures, utilizing a custom MEMS device, at multiple impact velocities. Experimental results show that heat flux caused by droplet impingement has a weaker dependence on surface temperature than receding MCL heat transfer due to evaporation, which is significantly surface temperature dependent. The measurements also demonstrate that when a droplet impacts a heated surface and evaporates, the process can be divided into two segments based on the effective heat transfer rate: an initial conduction-dominated segment followed by another segment dominated by surface evaporation. For subcooled impinging droplets, the effect of oscillatory motion is found to be negligible, unlike in a superheated regime; hence, heat conduction into the droplet entirely governs the first segment. Results also show that heat flux at the solid-liquid interface of an impinging droplet increases with the rise of either impact velocity or surface temperature. In the subcooled regime, droplets impacting a heated surface have approximately 1.6 times higher vertical heat flux values than gently deposited droplets. Furthermore, this study quantifies the contributions of buoyancy and thermocapillary convection within the droplet to the overall heat transfer. 
                        more » 
                        « less   
                    
                            
                            Heat transfer during droplet impact on a cold superhydrophobic surface via interfacial thermal mapping
                        
                    
    
            Abstract Undesired heat transfer during droplet impact on cold surfaces can lead to ice formation and damage to renewable infrastructure, among others. To address this, superhydrophobic surfaces aim to minimize the droplet surface interaction thereby, holding promise to greatly limit heat transfer. However, the droplet impact on such surfaces spans only a few milliseconds making it difficult to quantify the heat exchange at the droplet–solid interface. Here, we employ high‐speed infrared thermography and a three‐dimensional transient heat conduction COMSOL model to map the dynamic heat flux distribution during droplet impact on a cold superhydrophobic surface. The comprehensive droplet impact experiments for varying surface temperature, droplet size, and impacting height reveal that the heat transfer effectiveness () scales with the dimensionless maximum spreading radius as , deviating from previous semi‐infinite scaling. Interestingly, despite shorter contact times, droplets impacting from higher heights demonstrate increased heat transfer effectiveness due to expanded contact area. The results suggest that reducing droplet spreading time, as opposed to contact time alone, can be a more effective strategy for minimizing heat transfer. The results presented here highlight the importance of both contact area and contact time on the heat exchange between a droplet and a cold superhydrophobic surface. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2047727
- PAR ID:
- 10582753
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Droplet
- Volume:
- 3
- Issue:
- 3
- ISSN:
- 2769-2159
- Subject(s) / Keyword(s):
- Droplets, Transient heat transfer
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Droplet impacts on solid surfaces produce a wide variety of phenomena such as spreading, splashing, jetting, receding, and rebounding. In microholed surfaces, downward jets through the hole can be caused by the high impact inertia during the spreading phase of the droplet over the substrate as well as the cavity collapse during recoil phase of the droplet. We investigate the dynamics of the jet formed through the single hole during the impacting phase of the droplet on a micro-holed hydrophilic substrate. The sub-millimeter circular holes are created on the 0.2 mm-thickness hydrophilic plastic films using a 0.5 mm punch. Great care has been taken to ensure that the millimeter-sized droplets of water dispensed by a syringe pump through a micropipette tip can impact directly over the micro-holes. A high-speed video photography camera is employed to capture the full event of impacting and jetting. A MATLAB code has been developed to process the captured videos for data analysis. We study the effect of impact velocity on the jet formation including jet velocity, ejected droplet volume, and breakup process. We find that the Weber number significantly affects outcomes of the drop impact and jetting mechanism. We also examine the dynamic contact angle of the contact line during the spreading and the receding phase.more » « less
- 
            A water droplet dispensed on a superhydrophobic ratchet surface is formed into an asymmetric shape, which creates a Laplace pressure gradient due to the contact angle difference between two sides. This work presents a magnetically actuated superhydrophobic ratchet surface composed of nanostructured black silicon strips on elastomer ridges. Uniformly magnetized NdFeB layers sputtered under the black silicon strips enable an external magnetic field to tilt the black silicon strips and form a superhydrophobic ratchet surface. Due to the dynamically controllable Laplace pressure gradient, a water droplet on the reported ratchet surface experiences different forces on two sides, which are explored in this work. Here, the detailed fabrication procedure and the related magnetomechanical model are provided. In addition, the resultant asymmetric spreading of a water droplet is studied. Finally, droplet impact characteristics are investigated in three different behaviors of deposition, rebound, and penetration depending on the impact speed. The findings in this work are exploitable for further droplet manipulation studies based on a dynamically controllable superhydrophobic ratchet surface.more » « less
- 
            Abstract Coalescence‐induced droplet jumping phenomena on superhydrophobic surfaces can significantly enhance their heat transfer performances by effectively removing droplets from the surfaces. However, understanding the ideal design for condensing surfaces is still challenging due to the complex nature of droplet dynamics associated with their nucleation, coalescing, and jumping mechanisms. The intrinsic dynamic nature of droplet behaviors suggests the use of hierarchical concave morphology to account for the different length scales associated with each transport phenomenon. The hierarchical morphology thereby enables heterogeneous wetting characteristics by realizing both microscale droplets on superhydrophobic surfaces and nanoscale pinning regions beneath the droplets by arresting liquid residues after droplet jumping. Heat transfer performances are further examined by extracting physically meaningful descriptors, such as nucleation sites, droplet growth rates, and droplet jumping frequency, showing 44% enhancements when droplet nucleation sites are designed in selective locations.more » « less
- 
            Droplet impact on oscillating substrates is important for both natural and industrial processes. Recognizing the importance of the dynamics that arises from the interplay between droplet transport and substrate motion, in this work, we present an experimental investigation of the spreading of a droplet impacting a sinusoidally oscillating hydrophobic substrate. We focus particularly on the maximum spread of droplets as a function of various parameters of substrate oscillation. We first quantify the maximum spreading diameter attained by the droplets as a function of frequency, amplitude of vibration, and phase at the impact for various impact velocities. We highlight that there can be two stages of spreading. Stage I, which is observed at all impact conditions, is controlled by the droplet inertia and affected by the substrate oscillation. For certain conditions, a Stage II spreading is also observed, which occurs during the retraction process of Stage I due to additional energies imparted by the substrate oscillation. Subsequently, we derive scaling analyses to predict the maximum spreading diameters and the time for this maximum spread for both Stage I and Stage II. Furthermore, we identify the necessary condition for Stage II spreading to be greater than Stage I spreading. The results will enable optimization of the parameters in applications where substrate oscillation is used to control the droplet spread, and thus heat and mass transfer between the droplet and the substrate.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    