skip to main content


Title: Jet Formation After Droplet Impact on Microholed Hydrophilic Surfaces
Droplet impacts on solid surfaces produce a wide variety of phenomena such as spreading, splashing, jetting, receding, and rebounding. In microholed surfaces, downward jets through the hole can be caused by the high impact inertia during the spreading phase of the droplet over the substrate as well as the cavity collapse during recoil phase of the droplet. We investigate the dynamics of the jet formed through the single hole during the impacting phase of the droplet on a micro-holed hydrophilic substrate. The sub-millimeter circular holes are created on the 0.2 mm-thickness hydrophilic plastic films using a 0.5 mm punch. Great care has been taken to ensure that the millimeter-sized droplets of water dispensed by a syringe pump through a micropipette tip can impact directly over the micro-holes. A high-speed video photography camera is employed to capture the full event of impacting and jetting. A MATLAB code has been developed to process the captured videos for data analysis. We study the effect of impact velocity on the jet formation including jet velocity, ejected droplet volume, and breakup process. We find that the Weber number significantly affects outcomes of the drop impact and jetting mechanism. We also examine the dynamic contact angle of the contact line during the spreading and the receding phase.  more » « less
Award ID(s):
1701339
NSF-PAR ID:
10359535
Author(s) / Creator(s):
Date Published:
Journal Name:
IMECE2022
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The evaporation of droplets on surfaces is a ubiquitous phenomenon essential in nature and industrial applications ranging from thermal management of electronics to self-assembly-based fabrication. In this study, water droplet evaporation on a thin quartz substrate is analyzed using an unsteady two-step arbitrary Lagrangian-Eulerian (ALE) moving mesh model, wherein the evaporation process is simulated during the constant contact radius (CCR) and contact angle (CCA) modes. The numerical model considers mass transfer in the gas domain, flow in the liquid and gas domains, and heat transfer in the solid, liquid, and gas domains. Besides, the model also accounts for interfacial force balance, including thermocapillary stresses, to obtain the instantaneous droplet shape. Experiments involving droplet evaporation on unheated quartz substrates agree with model predictions of contact radius, contact angle, and droplet volume. Model results indicating temperature and velocity distribution across an evaporating water droplet show that the lowest temperatures are at the liquid-gas interface, and a single vortex exists for the predominant duration of the droplet's lifetime. The temperature of the unheated substrate is also significantly reduced due to evaporative cooling. The interfacial evaporation flux distribution, which depends on heat transfer across the droplet and advection in the surrounding medium, shows the highest values near the three-phase contact line. In addition, the model also predicts evaporation dynamics when the substrate is heated and exposed to different advection conditions. Generally, higher evaporation rates result from higher substrate heating and advection rates. However, substrate heating and advection in the surrounding gas have minimal effects on the relative durations of CCR and CCA modes for a given receding contact angle. Specifically, in this case, a 40× increase in substrate heating rate or 7.5× increase in gas velocity can only change these relative durations by 3%. This study also highlights the importance of surface wettability, which affects evaporation dynamics for all the conditions explored by the numerical model. 
    more » « less
  2. null (Ed.)
    International Ocean Discovery Program (IODP) Expedition 360 was the first leg of Phase I of the SloMo (shorthand for “The nature of the lower crust and Moho at slower spreading ridges”) Project, a multiphase drilling program that proposes to drill through the out- ermost of the global seismic velocity discontinuities, the Mohor- ovičić seismic discontinuity (Moho). The Moho corresponds to a compressional wave velocity increase, typically at ~7 km beneath the oceans, and has generally been regarded as the boundary be- tween crust and mantle. An alternative model, that the Moho is a hydration front in the mantle, has recently gained credence upon the discovery of abundant partially serpentinized peridotite on the seafloor and on the walls of fracture zones, such as at Atlantis Bank, an 11–13 My old elevated oceanic core complex massif adjacent to the Atlantis II Transform on the Southwest Indian Ridge. Hole U1473A was drilled on the summit of Atlantis Bank during Expedition 360, 1–2 km away from two previous Ocean Drilling Program (ODP) holes: Hole 735B (drilled during ODP Leg 118 in 1987 and ODP Leg 176 in 1997) and Hole 1105A (drilled during ODP Leg 179 in 1998). A mantle peridotite/gabbro contact has been traced by dredging and diving along the transform wall for 40 km. The contact is located at ~4200 m depth on the transform wall be- low the drill sites but shoals considerably 20 km to the south, where it was observed in outcrop at 2563 m depth. Moho reflections, how- ever, have been found at ~5–6 km beneath Atlantis Bank and <4 km beneath the transform wall, leading to the suggestion that the seis- mic discontinuity may not represent the crust/mantle boundary but rather an alteration (serpentinization) front. This in turn raises the interesting possibility that methanogenesis associated with ser- pentinization could support a whole new planetary biosphere deep in the oceanic basement. The SloMo Project seeks to test these hy- potheses at Atlantis Bank and evaluate the processes of natural car- bon sequestration in the lower crust and uppermost mantle. A primary objective of SloMo Leg 1 was to explore the lateral variability of the stratigraphy established in Hole 735B. Comparison of Hole U1473A with Holes 735B and 1105A allows us to demon- strate a continuity of process and complex interplay of magmatic ac- cretion and steady-state detachment faulting over a time period of ~128 ky. Preliminary assessment indicates that these sections of lower crust are constructed by repeated cycles of intrusion, repre- sented in Hole U1473A by approximately three upwardly differenti- ated hundreds of meter–scale bodies of olivine gabbro broadly similar to those encountered in the deeper parts of Hole 735B. Specific aims of Expedition 360 focused on gaining an under- standing of how magmatism and tectonism interact in accommo- dating seafloor spreading, how magnetic reversal boundaries are expressed in the lower crust, assessing the role of the lower crust and shallow mantle in the global carbon cycle, and constraining the extent and nature of life at deep levels within the ocean lithosphere. 
    more » « less
  3. null (Ed.)
    International Ocean Discovery Program (IODP) Expedition 360 was the first leg of Phase I of the SloMo (shorthand for “The nature of the lower crust and Moho at slower spreading ridges”) Project, a multiphase drilling program that proposes to drill through the outermost of the global seismic velocity discontinuities, the Mohorovičić seismic discontinuity (Moho). The Moho corresponds to a compressional wave velocity increase, typically at ~7 km beneath the oceans, and has generally been regarded as the boundary between crust and mantle. An alternative model, that the Moho is a hydration front in the mantle, has recently gained credence upon the discovery of abundant partially serpentinized peridotite on the seafloor and on the walls of fracture zones, such as at Atlantis Bank, an 11–13 My old elevated oceanic core complex massif adjacent to the Atlantis II Transform on the Southwest Indian Ridge. Hole U1473A was drilled on the summit of Atlantis Bank during Expedition 360, 1–2 km away from two previous Ocean Drilling Program (ODP) holes: Hole 735B (drilled during ODP Leg 118 in 1987 and ODP Leg 176 in 1997) and Hole 1105A (drilled during ODP Leg 179 in 1998). A mantle peridotite/gabbro contact has been traced by dredging and diving along the transform wall for 40 km. The contact is located at ~4200 m depth on the transform wall below the drill sites but shoals considerably 20 km to the south, where it was observed in outcrop at 2563 m depth. Moho reflections, however, have been found at ~5–6 km beneath Atlantis Bank and <4 km beneath the transform wall, leading to the suggestion that the seismic discontinuity may not represent the crust/mantle boundary but rather an alteration (serpentinization) front. This in turn raises the interesting possibility that methanogenesis associated with serpentinization could support a whole new planetary biosphere deep in the oceanic basement. The SloMo Project seeks to test these hypotheses at Atlantis Bank and evaluate the processes of natural carbon sequestration in the lower crust and uppermost mantle. A primary objective of SloMo Leg 1 was to explore the lateral variability of the stratigraphy established in Hole 735B. Comparison of Hole U1473A with Holes 735B and 1105A allows us to demonstrate a continuity of process and complex interplay of magmatic accretion and steady-state detachment faulting over a time period of ~128 ky. Preliminary assessment indicates that these sections of lower crust are constructed by repeated cycles of intrusion, represented in Hole U1473A by approximately three upwardly differentiated hundreds of meter–scale bodies of olivine gabbro broadly similar to those encountered in the deeper parts of Hole 735B. Specific aims of Expedition 360 focused on gaining an understanding of how magmatism and tectonism interact in accommodating seafloor spreading, how magnetic reversal boundaries are expressed in the lower crust, assessing the role of the lower crust and shallow mantle in the global carbon cycle, and constraining the extent and nature of life at deep levels within the ocean lithosphere. 
    more » « less
  4. International Ocean Discovery Program (IODP) Expedition 360 was the first leg of Phase I of the SloMo (shorthand for “The nature of the lower crust and Moho at slower spreading ridges”) Project, a multiphase drilling program that proposes to drill through the outermost of the global seismic velocity discontinuities, the Mohorovičić seismic discontinuity (Moho). The Moho corresponds to a compressional wave velocity increase, typically at ~7 km beneath the oceans, and has generally been regarded as the boundary between crust and mantle. An alternative model, that the Moho is a hydration front in the mantle, has recently gained credence upon the discovery of abundant partially serpentinized peridotite on the seafloor and on the walls of fracture zones, such as at Atlantis Bank, an 11–13 My old elevated oceanic core complex massif adjacent to the Atlantis II Transform on the Southwest Indian Ridge. Hole U1473A was drilled on the summit of Atlantis Bank during IODP Expedition 360, 1–2 km away from two previous Ocean Drilling Program (ODP) holes: Hole 735B (drilled during ODP Leg 118 in 1987 and ODP Leg 176 in 1997) and Hole 1105A (drilled during ODP Leg 179 in 1998). A mantle peridotite/gabbro contact has been traced by dredging and diving along the transform wall for 40 km. The contact is located at ~4200 m depth at the drill sites but shoals considerably 20 km to the south, where it was observed in outcrop at 2563 m depth. Moho reflections have, however, been found at ~5–6 km beneath Atlantis Bank and <4 km beneath the transform wall, leading to the suggestion that the seismic discontinuity may not represent the crust/mantle boundary but rather an alteration (serpentinization) front. This then raises the interesting possibility that a whole new planetary biosphere may thrive due to methanogenesis associated with serpentinization. The SloMo Project seeks to test these two hypotheses at Atlantis Bank and evaluate carbon sequestration in the lower crust and uppermost mantle. A primary objective of SloMo Leg 1 was to explore the lateral variability of the stratigraphy established in Hole 735B. Comparison of Hole U1473A with Holes 735B and 1105A allows us to demonstrate a continuity of process and complex interplay of magmatic accretion and steady-state detachment faulting over a time period of ~128 ky. Preliminary assessment indicates that these sections of lower crust are constructed by repeated cycles of intrusion, represented in Hole U1473A by approximately three upwardly differentiated hundreds of meter–scale bodies of olivine gabbro broadly similar to those encountered in the deeper parts of Hole 735B. Specific aims of Expedition 360 focused on gaining an understanding of how magmatism and tectonism interact in accommodating seafloor spreading, how magnetic reversal boundaries are expressed in the lower crust, assessing the role of the lower crust and shallow mantle in the global carbon cycle, and constraining the extent and nature of life at deep levels within the ocean lithosphere. 
    more » « less
  5. null (Ed.)
    The jetting phenomenon associated with droplet impact upon a hydrophilic micropillared substrate was analyzed in detail using a high-speed camera. Viscosities of the fluids were varied using differing concentrations of glycerol in deionized water. This paper aims to connect similarities between this form of capillary jetting and another well-known jetting phenomenon from the bubble bursting. Both experience a cavity collapse when opposing fluid fronts collide which causes a singularity at the liquid surface, thus leading to the occurrence of jetting. Following processes used to define scaling laws for bubble bursting, a similar approach was taken to derive scaling laws for the dimensionless jet height, jet radius, base height, and radius of the jet base with respect to dimensionless time for the jetting phenomenon associated with the droplet impact. The development of a top droplet before the breakup of the jet also allows the examination of a scaling law for the necking diameter. We find that with the proper scaling factors, the evolution of the jet profile can collapse into a master profile for different fluids and impact velocities. The time dependence of the necking diameter before the jet breakup follows the power law with an exponent of ~2/3. Contrastingly, for other jet parameters such as the radius and height, the power law relationship with time dependence was not found to have a clear pattern that emerged from these studies. 
    more » « less