INTRODUCTION The Anthropocene is marked by an accelerated loss of biodiversity, widespread population declines, and a global conservation crisis. Given limited resources for conservation intervention, an approach is needed to identify threatened species from among the thousands lacking adequate information for status assessments. Such prioritization for intervention could come from genome sequence data, as genomes contain information about demography, diversity, fitness, and adaptive potential. However, the relevance of genomic data for identifying at-risk species is uncertain, in part because genetic variation may reflect past events and life histories better than contemporary conservation status. RATIONALE The Zoonomia multispecies alignment presents an opportunity to systematically compare neutral and functional genomic diversity and their relationships to contemporary extinction risk across a large sample of diverse mammalian taxa. We surveyed 240 species spanning from the “Least Concern” to “Critically Endangered” categories, as published in the International Union for Conservation of Nature’s Red List of Threatened Species. Using a single genome for each species, we estimated historical effective population sizes ( N e ) and distributions of genome-wide heterozygosity. To estimate genetic load, we identified substitutions relative to reconstructed ancestral sequences, assuming that mutations at evolutionarily conserved sites and in protein-coding sequences, especially in genes essential for viability in mice, are predominantly deleterious. We examined relationships between the conservation status of species and metrics of heterozygosity, demography, and genetic load and used these data to train and test models to distinguish threatened from nonthreatened species. RESULTS Species with smaller historical N e are more likely to be categorized as at risk of extinction, suggesting that demography, even from periods more than 10,000 years in the past, may be informative of contemporary resilience. Species with smaller historical N e also carry proportionally higher burdens of weakly and moderately deleterious alleles, consistent with theoretical expectations of the long-term accumulation and fixation of genetic load under strong genetic drift. We found weak support for a causative link between fixed drift load and extinction risk; however, other types of genetic load not captured in our data, such as rare, highly deleterious alleles, may also play a role. Although ecological (e.g., physiological, life-history, and behavioral) variables were the best predictors of extinction risk, genomic variables nonrandomly distinguished threatened from nonthreatened species in regression and machine learning models. These results suggest that information encoded within even a single genome can provide a risk assessment in the absence of adequate ecological or population census data. CONCLUSION Our analysis highlights the potential for genomic data to rapidly and inexpensively gauge extinction risk by leveraging relationships between contemporary conservation status and genetic variation shaped by the long-term demographic history of species. As more resequencing data and additional reference genomes become available, estimates of genetic load, estimates of recent demographic history, and accuracy of predictive models will improve. We therefore echo calls for including genomic information in assessments of the conservation status of species. Genomic information can help predict extinction risk in diverse mammalian species. Across 240 mammals, species with smaller historical N e had lower genetic diversity, higher genetic load, and were more likely to be threatened with extinction. Genomic data were used to train models that predict whether a species is threatened, which can be valuable for assessing extinction risk in species lacking ecological or census data. [Animal silhouettes are from PhyloPic] 
                        more » 
                        « less   
                    
                            
                            Accurate predictive modeling of conservation status in animal species using supervised learning
                        
                    
    
            Abstract Conservation management to mitigate extinction of wildlife becomes more crucial than ever as global impacts due to anthropogenic activities and climate change continue to create devastation for species around the globe. Despite ongoing efforts to understand species constantly changing population dynamics due to anthropogenic stressors, there is a strong disconnect between conservation research and conservation policy, what is known as the “Conservation Gap”. The International Union of Conservation of Nature, the IUCN, is a globally recognized organization that works to sustain biodiversity by maintaining a ranking of species known as their Red List. However, the IUCN does not currently utilize genetic information to assess species conservation status despite the availability of molecular data. Here we use over 7300 studies collated from the MacroPopGen database, and over 450 published articles from the public repository DataDryad, focused on conservation and population genetics, sampling across a variety of invertebrate and vertebrate taxa, and using IUCN classifications to predict species endangerment using machine learning. Our models were able to accurately predict species threat level classified by the IUCN using both measures of genetic diversity and differentiation with IUCN assessment criteria. Our goal is to use these models to help determine and communicate conservation status to practitioners that takes into consideration all available species-specific information. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2147812
- PAR ID:
- 10582832
- Publisher / Repository:
- Research Square
- Date Published:
- Format(s):
- Medium: X
- Institution:
- Research Square
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Subterranean ecosystems harbor globally important yet highly threatened biodiversity. Unfortunately, subterranean biodiversity is often neglected in regional and global conservation initiatives, including conservation assessments. We reviewed the conservation status and threats to subterranean species based on the two most popular conservation assessment protocols in North America, NatureServe and International Union for Conservation of Nature (IUCN) Red List, as well as federal and state/provincial protection status of the 1,460 described cave-obligate species occurring in the United States and Canada. Only 9.3% of species have been assessed under IUCN Red List criteria compared to 77.9% of species assessed under NatureServe criteria; notably, 1,065 and 116 of species are assessed at an elevated risk of extinction by NatureServe and IUCN Red List, respectively. Just 41 species are listed or proposed to be listed under the U.S. Endangered Species Act and none of the 10 species that occur in Canada are federally listed. Vertebrates (fishes and salamanders), decapods (crayfishes and shrimps), and U.S. federally listed species are overrepresented on the list of species with IUCN Red List assessments compared to other taxonomic groups, particularly arachnids, millipedes, and insects. Most species assessed under IUCN Red List criteria as well as federally listed species occur in the Edwards Plateau and Balcones Escarpment karst region of Texas. Major threats frequently reported in conservation assessments include habitat degradation, pollution/contamination, recreational activities, climate change, and groundwater exploitation; however, information on threats was lacking for most species for nearly all major taxonomic groups, except decapods, fishes, and salamanders. The intrinsic vulnerability of subterranean biodiversity coupled with the many potential threats facing species and extensive biodiversity knowledge gaps makes assessing their conservation status and ultimately their protection a challenging endeavor. We highlight several limitations of implementing current conservation assessment approaches while offering recommendations to improve our ability to assess the conservation status of subterranean biodiversity to better inform sound local to global conservation policies and actions.more » « less
- 
            This talk will describe the work of the CPN Pre-Impact Baselines Working Group to leverage the wealth of paleoecological and historical ecological data to facilitate estimation of pre-impact species distribution baselines. Species conservation has long focused on preventing human-driven extinctions, and over the past 50 years conservation success has been measured using changes in species’ extinction risk. However, recently calls have been made for a parallel focus on species recovery, and on developing metrics with which to assess its achievement. This call to action within the conservation community is fuelled in part by the recognition that baselines of species abundance and distribution have shifted dramatically across human generations with globally detectable human impacts on ecosystems beginning at least several thousand years ago. While assessment of extinction risk generally only considers species’ change over the past few decades, assessment of recovery requires considering change over centuries to millennia. This requires identifying the baseline status at the time when humans first became a major factor influencing the abundance and distribution of a species. Two new frameworks for considering conservation status relative to a species’ pre-impact baseline have been recently released: EPOCH (Evaluation of POpulation CHange), and the IUCN Green Status of Species. These frameworks have been lauded as moving conservation in a much-needed direction, but there is also concern about whether these methods will be applicable to any but a few well-known, charismatic species. Using a combination of modelling approaches, we are working to estimate species pre-impact distributions in a way that is accessible to conservation practitioners, helping to unshift the baseline and bring species recovery into the mainstream.more » « less
- 
            ABSTRACT Advances in genomic sequencing have magnified our understanding of ecological and evolutionary mechanisms relevant to biodiversity conservation. As a result, the field of conservation genomics has grown rapidly. Genomic data can be effective in guiding conservation decisions by revealing fine‐scale patterns of genetic diversity and adaptation. Adaptive potential, sometimes referred to as evolutionary potential, is particularly informative for conservation due to its inverse relationship with extinction risk. Yet, global coldspots in genomic resources impede progress toward conservation goals. We undertook a systematic literature review to characterise the global distribution of genomic resources for amphibians and reptiles relative to species richness, IUCN status, and predicted global change. We classify the scope of available genomic resources by their potential applicability to global change. Finally, we examine global patterns of collaborations in genomic studies. Our findings underscore current priorities for expanding genomic resources, especially those aimed at predicting adaptive potential to future environmental change. Our results also highlight the need for improved global collaborations in genomic research, resource sharing, and capacity building in the Global South.more » « less
- 
            Under the recently adopted Kunming‐Montreal Global Biodiversity Framework, 196 Parties committed to reporting the status of genetic diversity for all species. To facilitate reporting, three genetic diversity indicators were developed, two of which focus on processes contributing to genetic diversity conservation: maintaining genetically distinct populations and ensuring populations are large enough to maintain genetic diversity. The major advantage of these indicators is that they can be estimated with or without DNA‐based data. However, demonstrating their feasibility requires addressing the methodological challenges of using data gathered from diverse sources, across diverse taxonomic groups, and for countries of varying socio‐economic status and biodiversity levels. Here, we assess the genetic indicators for 919 taxa, representing 5271 populations across nine countries, including megadiverse countries and developing economies. Eighty‐three percent of the taxa assessed had data available to calculate at least one indicator. Our results show that although the majority of species maintain most populations, 58% of species have populations too small to maintain genetic diversity. Moreover, genetic indicator values suggest that IUCN Red List status and other initiatives fail to assess genetic status, highlighting the critical importance of genetic indicators.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    