skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Engineering electro-crystallization orientation and surface activation in wide-temperature zinc ion supercapacitors
Abstract Matching the capacity of the anode and cathode is essential for maximizing electrochemical cell performance. This study presents two strategies to balance the electrode utilization in zinc ion supercapacitors, by decreasing dendritic loss in the zinc anode while increasing the capacity of the activated carbon cathode. The anode current collector was modified with copper nanoparticles to direct zinc plating orientation and minimize dendrite formation, improving the Coulombic efficiency and cycle life. The cathode was activated by an electrolyte reaction to increase its porosity and gravimetric capacity. The full cell delivered a specific energy of 192 ± 0.56 Wh kg−1at a specific power of 1.4 kW kg−1, maintaining 84% capacity after 50,000 full charge-discharge cycles up to 2 V. With a cumulative capacity of 19.8 Ah cm−2surpassing zinc ion batteries, this device design is particularly promising for high-endurance applications, including un-interruptible power supplies and energy-harvesting systems that demand frequent cycling.  more » « less
Award ID(s):
2312715 2120701
PAR ID:
10582849
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
16
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Sodium all‐solid‐state batteries (NaSSBs) with an alloy‐type anode (e.g., Sn and Sb) offer superior capacity and energy density compared to hard carbon anode. However, the irreversible loss of Na+at the alloy anode during the initial cycle results in diminished capacity and stability, impairing full‐cell performance. This study presents an easy‐to‐implement cathode presodiation strategy by employing a Na‐rich material to address these challenges. Leveraging the high theoretical capacity and suitable voltage window, Na2S is chosen as the Na donor, which is activated by creating a mixed electron‐ion conducting network, delivering a high capacity of 511.7 mAh g−1. By adding a small amount (i.e., 3 wt.%) of Na2S to the cathode composite, a NaCrO2|| Sn full cell demonstrated capacity improvement from 90.8 to 118.2 mAh g−1(based on cathode mass). The capacity‐balanced full cell can thus cycle to more than 300 times with >90% capacity retention. This work provides a practical solution to enhance the full‐cell performance and advance the transformation from half‐cell to full‐cell applications of NaSSBs. 
    more » « less
  2. Abstract Ion‐insertion capacitors show promise to bridge the gap between supercapacitors of high power densities and batteries of high energy densities. While research efforts have primarily focused on Li+‐based capacitors (LICs), Na+‐based capacitors (SICs) are theoretically cheaper and more sustainable. Owing to the larger size of Na+compared to Li+, finding high‐rate anode materials for SICs has been challenging. Herein, an SIC anode architecture is reported consisting of TiO2nanoparticles anchored on a sheared‐carbon nanotubes backbone (TiO2/SCNT). The SCNT architecture provides advantages over other carbon architectures commonly used, such as reduced graphene oxide and CNT. In a half‐cell, the TiO2/SCNT electrode shows a capacity of 267 mAh g−1at a 1 C charge/discharge rate and a capacity of 136 mAh g−1at 10 C while maintaining 87% of initial capacity over 1000 cycles. When combined with activated carbon (AC) in a full cell, an energy density and power density of 54.9 Wh kg−1and 1410 W kg−1, respectively, are achieved while retaining a 90% capacity retention over 5000 cycles. The favorable rate capability, energy and power density, and durability of the electrode is attributed to the enhanced electronic and Na+conductivity of the TiO2/SCNT architecture. 
    more » « less
  3. Abstract A full cell chemistry of aqueous dual‐ion battery (DIB) was reported, comprising the graphite cathode and 3,4,9,10‐perylenetetracarboxylic diimide (PTCDI) as the anode. This DIB employed a mixture aqueous electrolyte: 5 mtributylmethylammonium (TBMA) chloride plus 5 mMgCl2, where [MgCl3]and TBMA+serve as the charge carriers for cathode and anode of the DIB, respectively. This novel full cell exhibited a specific capacity of around 41 mAh g−1based on the total active mass of both electrodes with an average operation voltage of 1.45 V and stable cycling for 400 cycles. 
    more » « less
  4. Abstract The growing demand for bioelectronics has generated widespread interest in implantable energy storage. These implantable bioelectronic devices, powered by a complementary battery/capacitor system, have faced difficulty in miniaturization without compromising their functionality. This paper reports on the development of a promising high‐rate cathode material for implantable power sources based on Li‐exchanged Na1.5VOPO4F0.5anchored on reduced graphene oxide (LNVOPF‐rGO). LNVOPF is unique in that it offers dual charge storage mechanisms, which enable it to exhibit mixed battery/capacitor electrochemical behavior. In this work, electrochemical Li‐ion exchange of the LNVOPF structure is characterized by operando X‐ray diffraction. Through designed nanostructuring, the charge storage kinetics of LNVOPF are improved, as reflected in the stored capacity of 107 mAh g−1at 20C. A practical full cell device composed of LNVOPF and T‐Nb2O5, which serves as a pseudocapacitive anode, is fabricated to demonstrate not only high energy/power density storage (100 Wh kg−1at 4000 W kg−1) but also reliable pulse capability and biocompatibility, a desirable combination for applications in biostimulating devices. This work underscores the potential of miniaturizing biomedical devices by replacing a conventional battery/capacitor couple with a single power source. 
    more » « less
  5. Sodium ion batteries are an emerging candidate to replace lithium ion batteries in large-scale electrical energy storage systems due to the abundance and widespread distribution of sodium. Despite the growing interest, the development of high-performance sodium cathode materials remains a challenge. In particular, polyanionic compounds are considered as a strong cathode candidate owing to their better cycling stability, a flatter voltage profile, and stronger thermal stability compared to other cathode materials. Here, we report the rational design of a biomimetic bone-inspired polyanionic Na3V2(PO4)3-reduced graphene oxide composite (BI-NVP) cathode that achieves ultrahigh rate charging and ultralong cycling life in a sodium ion battery. At a charging rate of 1 C, BI-NVP delivers 97% of its theoretical capacity and is able to retain a voltage plateau even at the ultra-high rate of 200 C. It also shows long cycling life with capacity retention of 91% after 10 000 cycles at 50 C. The sodium ion battery cells with a BI-NVP cathode and Na metal anode were able to deliver a maximum specific energy of 350 W h kg−1 and maximum specific power of 154 kW kg−1. In situ and postmortem analyses of cycled BI-NVP (including by Raman and XRD spectra) HRTEM, and STEM-EELS, indicate highly reversible dilation–contraction, negligible electrode pulverization, and a stable NVP-reduced graphene oxide layer interface. The results presented here provide a rational and biomimetic material design for the electrode architecture for ultrahigh power and ultralong cyclability of the sodium ion battery full cells when paired with a sodium metal anode. 
    more » « less