skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Re-analysis of mobile mRNA datasets raises questions about the extent of long-distance mRNA communication
Abstract Short-read RNA-seq studies of grafted plants have led to the proposal that thousands of messenger RNAs (mRNAs) move over long distances between plant tissues1–7, potentially acting as signals8–12. Transport of mRNAs between cells and tissues has been shown to play a role in several physiological and developmental processes in plants, such as tuberization13, leaf development14and meristem maintenance15; yet for most mobile mRNAs, the biological relevance of transport remains to be determined16–19. Here we perform a meta-analysis of existing mobile mRNA datasets and examine the associated bioinformatic pipelines. Taking technological noise, biological variation, potential contamination and incomplete genome assemblies into account, we find that a high percentage of currently annotated graft-mobile transcripts are left without statistical support from available RNA-seq data. This meta-analysis challenges the findings of previous studies and current views on mRNA communication.  more » « less
Award ID(s):
1942437
PAR ID:
10582910
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Plants
Volume:
11
Issue:
5
ISSN:
2055-0278
Format(s):
Medium: X Size: p. 977-984
Size(s):
p. 977-984
Sponsoring Org:
National Science Foundation
More Like this
  1. Tandem CCCH zinc finger (TZF) proteins play diverse roles in plant growth and stress response. Although as many as 11 TZF proteins have been identified inArabidopsis, little is known about the mechanism by which TZF proteins select and regulate the target mRNAs. Here, we report thatArabidopsisTZF1 is a bona-fide stress granule protein. Ectopic expression ofTZF1(TZF1 OE), but not an mRNA binding-defective mutant (TZF1H186YOE), enhances salt stress tolerance inArabidopsis. RNA-seq analyses of NaCl-treated plants revealed that the down-regulated genes inTZF1 OEplants are enriched for functions in salt and oxidative stress responses. Because many of these down-regulated mRNAs contain AU- and/or U-rich elements (AREs and/or UREs) in their 3’-UTRs, we hypothesized that TZF1—ARE/URE interaction might contribute to the observed gene expression changes. Results from RNA immunoprecipitation-quantitative PCR analysis, gel-shift, and mRNA half-life assays indicate that TZF1 binds and triggers degradation of theautoinhibited Ca2+-ATPase 11(ACA11) mRNA, which encodes a tonoplast-localized calcium pump that extrudes calcium and dampens signal transduction pathways necessary for salt stress tolerance. Furthermore, this salt stress-tolerance phenotype was recapitulated inaca11null mutants. Collectively, our findings demonstrate that TZF1 binds and initiates degradation of specific mRNAs to enhance salt stress tolerance. 
    more » « less
  2. Messenger RNAs (mRNAs) function as mobile signals for cell-to-cell communication in multicellular organisms. The KNOTTED1 (KN1) homeodomain family transcription factors act non–cell autonomously to control stem cell maintenance in plants through cell-to-cell movement of their proteins and mRNAs through plasmodesmata; however, the mechanism of mRNA movement is largely unknown. We show that cell-to-cell movement of a KN1 mRNA requires ribosomal RNA–processing protein 44A (AtRRP44A), a subunit of the RNA exosome that processes or degrades diverse RNAs in eukaryotes. AtRRP44A can interact with plasmodesmata and mediates the cell-to-cell trafficking of KN1 mRNA, and genetic analysis indicates that AtRRP44A is required for the developmental functions of SHOOT MERISTEMLESS, an Arabidopsis KN1 homolog. Our findings suggest that AtRRP44A promotes mRNA trafficking through plasmodesmata to control stem cell–dependent processes in plants. 
    more » « less
  3. Gene expression is typically quantified as RNA abundance, which is influenced by both synthesis (transcription) and decay. Cytoplasmic decay typically initiates by deadenylation, after which decay can occur through any of three cytoplasmic decay pathways. Recent advances reveal several mechanisms by which RNA decay is regulated to control RNA abundance. mRNA can be post-transcriptionally modified, either indirectly through secondary structure or through direct modifications to the transcript itself, sometimes resulting in subsequent changes in mRNA decay rates. mRNA abundances can also be modified by tapping into pathways normally used for RNA quality control. Regulated mRNA decay can also come about through post-translational modification of decapping complex subunits. Likewise, mRNAs can undergo changes in subcellular localization (for example, the deposition of specific mRNAs into processing bodies, or P-bodies, where stabilization and destabilization occur in a transcript- and context-dependent manner). Additionally, specialized functions of mRNA decay pathways were implicated in a genome-wide mRNA decay analysis in Arabidopsis. Advances made using plants are emphasized in this review, but relevant studies from other model systems that highlight RNA decay mechanisms that may also be conserved in plants are discussed. 
    more » « less
  4. Summary Pre‐mRNA splicing is an essential step for the regulation of gene expression. In order to specifically capture splicing variants in plants for genome‐wide association studies (GWAS), we developed a software tool to quantify and visualise Variations of Splicing in Population (VaSP).VaSP can quantify splicing variants from short‐read RNA‐seq datasets and discover genotype‐specific splicing (GSS) events, which can be used to prioritise causal pre‐mRNA splicing events in GWAS. We applied our method to an RNA‐seq dataset with 328 samples from 82 genotypes from a rice diversity panel exposed to optimal and saline growing conditions.In total, 764 significant GSS events were identified in salt stress conditions. GSS events were used as markers for a GWAS with the shoot Na+accumulation, which identified six GSS events in five genes significantly associated with the shoot Na+content. Two of these genes,OsNUC1andOsRAD23emerged as top candidate genes with splice variants that exhibited significant divergence between the variants for shoot growth under salt stress conditions.VaSP is a versatile tool for alternative splicing analysis in plants and a powerful tool for prioritising candidate causal pre‐mRNA splicing and corresponding genomic variations in GWAS. 
    more » « less
  5. Abstract We have examined the roles of yeast mRNA decapping-activators Pat1 and Dhh1 in repressing the translation and abundance of specific mRNAs in nutrient-replete cells using ribosome profiling, RNA-Seq, CAGE analysis of capped mRNAs, RNA Polymerase II ChIP-Seq, and TMT-mass spectrometry of mutants lacking one or both factors. Although the Environmental Stress Response (ESR) is activated in dhh1Δ and pat1Δ mutants, hundreds of non-ESR transcripts are elevated in a manner indicating cumulative repression by Pat1 and Dhh1 in wild-type cells. These mRNAs show both reduced decapping and diminished transcription in the mutants, indicating that impaired mRNA turnover drives transcript derepression in cells lacking Dhh1 or Pat1. mRNA degradation stimulated by Dhh1/Pat1 is not dictated by poor translation nor enrichment for suboptimal codons. Pat1 and Dhh1 also collaborate to reduce translation and protein production from many mRNAs. Transcripts showing concerted translational repression by Pat1/Dhh1 include mRNAs involved in cell adhesion or utilization of the poor nitrogen source allantoin. Pat1/Dhh1 also repress numerous transcripts involved in respiration, catabolism of non-preferred carbon or nitrogen sources, or autophagy; and we obtained evidence for elevated respiration and autophagy in the mutants. Thus, Pat1 and Dhh1 function as post-transcriptional repressors of multiple pathways normally activated only during nutrient limitation. 
    more » « less