skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 3, 2026

Title: AEOS: Star-by-star Cosmological Simulations of Early Chemical Enrichment and Galaxy Formation
Abstract The Aeosproject introduces a series of high-resolution cosmological simulations that model star-by-star chemical enrichment and galaxy formation in the early Universe, achieving 1 pc resolution. These simulations capture the complexities of galaxy evolution within the first ~300 Myr by modeling individual stars and their feedback processes. By incorporating chemical yields from individual stars, Aeosgenerates galaxies with diverse stellar chemical abundances, linking them to hierarchical galaxy formation and early nucleosynthetic events. These simulations underscore the importance of chemical abundance patterns in ancient stars as vital probes of early nucleosynthesis, star formation histories, and galaxy formation. We examine the metallicity floors of various elements resulting from Population III enrichment, providing best-fit values for eight different metals (e.g., [O/H] = −4.0) to guide simulations without Population III models. Additionally, we identify galaxies that begin star formation with Population II after external enrichment and investigate the frequency of carbon-enhanced metal-poor stars at varying metallicities. The Aeossimulations offer detailed insights into the relationship between star formation, feedback, and chemical enrichment. Future work will extend these simulations to later epochs to interpret the diverse stellar populations of the Milky Way and its satellites.  more » « less
Award ID(s):
2303858 2307950 1815461 2307436 2006176 2108020
PAR ID:
10582971
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Astronomical Society
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
980
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
41
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We explore the effect of variations in the Population III initial mass function (IMF) and star-by-star feedback on early galaxy formation and evolution using the Aeossimulations. We compare simulations with two different Population III IMFs:Mchar = 10Mand M max = 100 M (Aeos10) andMchar = 20Mand M max = 300 M (Aeos20). Aeos20 produces significantly more ionizing photons, ionizing 30% of the simulation volume byz ≈ 14, compared to 9% in Aeos10. This enhanced ionization suppresses galaxy formation on the smallest scales. Differences in Population III IMF also affect chemical enrichment. Aeos20 produces Population II stars with higher abundances, relative to iron, of light andα-elements, a stronger odd–even effect, and a higher frequency of carbon-enhanced metal-poor stars. The abundance scatter between different Population II galaxies dominates the differences due to Population III IMF, though, implying a need for a larger sample of Population II stars to interpret the impact of Population III IMF on early chemical evolution. We also compare the Aeossimulations to traditional simulations that use single stellar population particles. We find that star-by-star modeling produces a steeper mass–metallicity relation due to less bursty feedback. These results highlight the strong influence of the Population III IMF on early galaxy formation and chemical evolution, emphasizing the need to account for IMF uncertainties in simulations and the importance of metal-poor Population II stellar chemical abundances when studying the first stars. 
    more » « less
  2. Abstract We investigate how stellar feedback from the first stars (Population III) distributes metals through the interstellar and intergalactic medium using the star-by-star cosmological hydrodynamics simulation, Aeos. We find that energy injected from the supernovae (SNe) of the first stars is enough to expel a majority of gas and injected metals beyond the virial radius of halos with massMdm ≲ 107M, regardless of the number of SNe. This prevents self-enrichment and results in a nonmonotonic increase in metallicity at early times. Most minihalos (Mdm ≳ 105M) do not retain significant fractions of the yields produced within their virial radii until they have grown to halo masses ofMdm ≳ 107M. The loss of metals to regions well beyond the virial radius delays the onset of enriched star formation and extends the period that Population III star formation can persist. We also explore the contributions of different nucleosynthetic channels to 10 individual elements. On the timescale of the simulation (lowest redshiftz= 14.3), enrichment is dominated by core-collapse supernovae for all elements, but with a significant contribution from asymptotic giant branch winds to thes-process elements, which are normally thought to only be important at late times. In this work, we establish important mechanisms for early chemical enrichment, which allows us to apply Aeosin later epochs to trace the evolution of enrichment during the complete transition from Population III to Population II stars. 
    more » « less
  3. Context.Feedback from stars in the form of radiation, stellar winds, and supernovae is crucial to regulating the star formation activity of galaxies. Dwarf galaxies are especially susceptible to these processes, making them an ideal test bed for studying the effects of stellar feedback in detail. Recent numerical models have aimed to resolve the interstellar medium (ISM) in dwarf galaxies with a very high resolution of several solar masses. However, when it comes to modeling the radiative feedback from stars, many models opt for simplified approaches instead of explicitly solving radiative transfer (RT) because of the computational complexity involved. Aims.We introduce the Realistic ISM modeling in Galaxy Evolution and Lifecycles (RIGEL) model, a novel framework to self-consistently model the effects of stellar feedback in the multiphase ISM of dwarf galaxies with explicit RT on a star-by-star basis. Methods.The RIGEL model integrates detailed implementations of feedback from individual massive stars into the state-of-the-art radiation-hydrodynamics code,AREPO-RT. It forms individual massive stars from the resolved multiphase ISM by sampling the initial mass function and tracks their evolution individually. The lifetimes, photon production rates, mass-loss rates, and wind velocities of these stars are determined by their initial masses and metallicities based on a library that incorporates a variety of stellar models. The RT equations are solved explicitly in seven spectral bins accounting for the infrared to He IIionizing bands, using a moment-base scheme with the M1 closure relation. The thermochemistry model tracks the nonequilibrium H, He chemistry as well as the equilibrium abundance of C I, C II, O I, O II, and CO in the irradiated ISM to capture the thermodynamics of all ISM phases, from cold molecular gas to hot ionized gas. Results.We evaluated the performance of the RIGEL model using 1 Mresolution simulations of isolated dwarf galaxies. We found that the star formation rate (SFR) and interstellar radiation field (ISRF) show strong positive correlations with the metallicity of the galaxy. Photoionization and photoheating can reduce the SFR by an order of magnitude by removing the available cold, dense gas fuel for star formation. The presence of ISRF also significantly changes the thermal structure of the ISM. Radiative feedback occurs immediately after the birth of massive stars and rapidly disperses the molecular clouds within 1 Myr. As a consequence, radiative feedback reduces the age spread of star clusters to less than 2 Myr, prohibits the formation of massive star clusters, and shapes the cluster initial mass function to a steep power-law form with a slope of ∼ − 2. The mass-loading factor (measured atz = 1 kpc) of the fiducial galaxy has a median ofηM ∼ 50, while turning off radiative feedback reduces this factor by an order of magnitude. Conclusions.We demonstrate that RIGEL effectively captures the nonlinear coupling of early radiative feedback and supernova feedback in the multiphase ISM of dwarf galaxies. This novel framework enables the utilization of a comprehensive stellar feedback and ISM model in cosmological simulations of dwarf galaxies and various galactic environments spanning a wide dynamic range in both space and time. 
    more » « less
  4. Abstract Ultra-diffuse galaxies (UDGs) are both extreme products of galaxy evolution and extreme environments in which to test our understanding of star formation. In this work, we contrast the spatially resolved star formation activity of a sample of 22 Hi-selected UDGs and 35 low-mass galaxies from the NASA Sloan Atlas (NSA) catalog within 120 Mpc. We employ a new joint spectral energy distribution fitting method to compute star formation rate and stellar mass surface density maps that leverage the high spatial resolution optical imaging data of the Hyper Suprime-Cam Subaru Strategic Program and the UV coverage of the Galaxy Evolution Explorer, along with Hiradial profiles estimated from a subset of galaxies that have spatially resolved Himaps. We find that UDGs have low star formation efficiencies as a function of their atomic gas down to scales of 500 pc. We additionally find that the stellar mass-weighted sizes of our UDG sample are unremarkable when considered as a function of their Himass—their stellar sizes are comparable to NSA dwarfs at fixed Himass. This is a natural result in the picture where UDGs are forming stars normally, but at low efficiencies. We compare our results to predictions from contemporary models of galaxy formation, and find in particular that our observations are difficult to reproduce in models where UDGs undergo stellar expansion due to vigorous star formation feedback should bursty star formation be required down toz= 0. 
    more » « less
  5. ABSTRACT The formation and evolution of galaxies have proved sensitive to the inclusion of stellar feedback, which is therefore crucial to any successful galaxy model. We present INFERNO, a new model for hydrodynamic simulations of galaxies, which incorporates resolved stellar objects with star-by-star calculations of when and where the injection of enriched material, momentum, and energy takes place. INFERNO treats early stellar kinematics to include phenomena such as walkaway and runaway stars. We employ this innovative model on simulations of a dwarf galaxy and demonstrate that our physically motivated stellar feedback model can drive vigorous galactic winds. This is quantified by mass and metal loading factors in the range of 10–100, and an energy loading factor close to unity. Outflows are established close to the disc, are highly multiphase, spanning almost 8 orders of magnitude in temperature, and with a clear dichotomy between mass ejected in cold, slow-moving (T ≲ 5 × 104 K, v < 100 km s−1) gas and energy ejected in hot, fast-moving (T > 106 K, v > 100 km s−1) gas. In contrast to massive disc galaxies, we find a surprisingly weak impact of the early stellar kinematics, with runaway stars having little to no effect on our results, despite exploding in diffuse gas outside the dense star-forming gas, as well as outside the galactic disc entirely. We demonstrate that this weak impact in dwarf galaxies stems from a combination of strong feedback and a porous interstellar medium, which obscure any unique signatures that runaway stars provide. 
    more » « less