Abstract Shuttle protein UBQLN2 functions in protein quality control (PQC) by binding to proteasomal receptors and ubiquitinated substrates via its N‐terminal ubiquitin‐like (UBL) and C‐terminal ubiquitin‐associated (UBA) domains, respectively. Between these two folded domains are low‐complexity STI1‐I and STI1‐II regions, connected by disordered linkers. The STI1 regions bind other components, such as HSP70, that are important to the PQC functions of UBQLN2. We recently determined that the STI1‐II region enables UBQLN2 to undergo liquid–liquid phase separation (LLPS) to form liquid droplets in vitro and biomolecular condensates in cells. However, how the interplay between the folded (UBL/UBA) domains and the intrinsically disordered regions mediates phase separation is largely unknown. Using engineered domain deletion constructs, we found that removing the UBA domain inhibits UBQLN2 LLPS while removing the UBL domain enhances LLPS, suggesting that UBA and UBL domains contribute asymmetrically in modulating UBQLN2 LLPS. To explain these differential effects, we interrogated the interactions that involve the UBA and UBL domains across the entire UBQLN2 molecule using nuclear magnetic resonance spectroscopy. To our surprise, aside from well‐studied canonical UBL:UBA interactions, there also exist moderate interactions between the UBL and several disordered regions, including STI1‐I and residues 555–570, the latter of which is a known contributor to UBQLN2 LLPS. Our findings are essential for the understanding of both the molecular driving forces of UBQLN2 LLPS and the effects of ligand binding to UBL, UBA, or disordered regions on the phase behavior and physiological functions of UBQLN2.
more »
« less
Conservation of Affinity Rather Than Sequence Underlies a Dynamic Evolution of the Motif-Mediated p53/MDM2 Interaction in Ray-Finned Fishes
Abstract The transcription factor and cell cycle regulator p53 is marked for degradation by the ubiquitin ligase MDM2. The interaction between these 2 proteins is mediated by a conserved binding motif in the disordered p53 transactivation domain (p53TAD) and the folded SWIB domain in MDM2. The conserved motif in p53TAD from zebrafish displays a 20-fold weaker interaction with MDM2, compared to the interaction in human and chicken. To investigate this apparent difference, we tracked the molecular evolution of the p53TAD/MDM2 interaction among ray-finned fishes (Actinopterygii), the largest vertebrate clade. Intriguingly, phylogenetic analyses, ancestral sequence reconstructions, and binding experiments showed that different loss-of-affinity changes in the canonical binding motif within p53TAD have occurred repeatedly and convergently in different fish lineages, resulting in relatively low extant affinities (KD = 0.5 to 5 μM). However, for 11 different fish p53TAD/MDM2 interactions, nonconserved regions flanking the canonical motif increased the affinity 4- to 73-fold to be on par with the human interaction. Our findings suggest that compensating changes at conserved and nonconserved positions within the motif, as well as in flanking regions of low conservation, underlie a stabilizing selection of “functional affinity” in the p53TAD/MDM2 interaction. Such interplay complicates bioinformatic prediction of binding and calls for experimental validation. Motif-mediated protein–protein interactions involving short binding motifs and folded interaction domains are very common across multicellular life. It is likely that the evolution of affinity in motif-mediated interactions often involves an interplay between specific interactions made by conserved motif residues and nonspecific interactions by nonconserved disordered regions.
more »
« less
- Award ID(s):
- 2225130
- PAR ID:
- 10583080
- Editor(s):
- O'Connell, Mary
- Publisher / Repository:
- Molecular Biology and Evolution
- Date Published:
- Journal Name:
- Molecular Biology and Evolution
- Volume:
- 41
- Issue:
- 2
- ISSN:
- 0737-4038
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Intrinsically disordered proteins (IDPs) engage in various fundamental biological activities, and their behavior is of particular importance for a better understanding of the verbose but well-organized signal transduction in cells. IDPs exhibit uniquely paradoxical features with low affinity but simultaneously high specificity in recognizing their binding targets. The transcription factor p53 plays a crucial role in cancer suppression, carrying out some of its biological functions using its disordered regions, such as N-terminal transactivation domain 2 (TAD2). Exploration of the binding and unbinding processes between proteins is challenging, and the inherently disordered properties of these regions further complicate the issue. Computer simulations are a powerful tool to complement the experiments to fill gaps to explore the binding/unbinding processes between proteins. Here, we investigated the binding mechanism between p300 Taz2 and p53 TAD2 through extensive molecular dynamics (MD) simulations using the physics- based UNited RESidue (UNRES) force field with additional Go̅-like potentials. Distance restraints extracted from the NMR- resolved structures were imposed on intermolecular residue pairs to accelerate binding simulations, in which Taz2 was immobilized in a native-like conformation and disordered TAD2 was fully free. Starting from six structures with TAD2 placed at different positions around Taz2, we observed a metastable intermediate state in which the middle helical segment of TAD2 is anchored in the binding pocket, highlighting the significance of the TAD2 helix in directing protein recognition. Physics-based binding simulations show that successful binding is achieved after a series of stages, including (1) protein collisions to initiate the formation of encounter complexes, (2) partial attachment of TAD2, and finally (3) full attachment of TAD2 to the correct binding pocket of Taz2. Furthermore, machine-learning-based PathDetect-SOM was used to identify two binding pathways, the encounter complexes, and the intermediate states.more » « less
-
Abstract The recent discovery of the bona-fide telomerase RNA (TR) from plants reveals conserved and unique secondary structure elements and the opportunity for new insight into the telomerase RNP. Here we examine how two highly conserved proteins previously implicated in Arabidopsis telomere maintenance, AtPOT1a and AtNAP57 (dyskerin), engage plant telomerase. We report that AtPOT1a associates with Arabidopsis telomerase via interaction with TERT. While loss of AtPOT1a does not impact AtTR stability, the templating domain is more accessible in pot1a mutants, supporting the conclusion that AtPOT1a stimulates telomerase activity but does not facilitate telomerase RNP assembly. We also show, that despite the absence of a canonical H/ACA binding motif within AtTR, dyskerin binds AtTR with high affinity and specificity in vitro via a plant specific three-way junction (TWJ). A core element of the TWJ is the P1a stem, which unites the 5′ and 3′ ends of AtTR. P1a is required for dyskerin-mediated stimulation of telomerase repeat addition processivity in vitro, and for AtTR accumulation and telomerase activity in vivo. The deployment of vertebrate-like accessory proteins and unique RNA structural elements by Arabidopsis telomerase provides a new platform for exploring telomerase biogenesis and evolution.more » « less
-
Skolnick, Jeffrey (Ed.)The link between p53 tumor suppressive functions and organismal lifespan is multifaceted. Its DNA-repair mechanism is longevity-enhancing while its role in cellular senescence pathways induces pro-aging phenotypes. To understand how p53 may regulate organismal lifespan, cross-species genotype-phenotype (GP) studies of the p53 DNA-binding domain (DBD) have been used to assess the correlation of amino acid changes to lifespan. Amino acid changes in non-DNA-binding regions such as the transactivation (TAD), proline-rich (PRD), regulatory (REG), and tetramerization (TET) are largely unexplored. In addition, existing GP correlation tools such as SigniSite do not account for phylogenetic relationships between aligned sequences in correlating genotypic differences to phenotypes such as lifespan. To identify phylogenetically significant, longevity-correlated residues in full-length p53 alignments, we developed a Python- and R-based workflow, Relative Evolutionary Scoring (RES). While RES-predicted longevity-associated residues (RPLARs) are concentrated primarily in the DBD, the PRD, TET, and REG domains also house RPLARs. While yeast functional assay enrichment reveals that RPLARs may be dispensable for p53-mediated transactivation, PEPPI and Rosetta-based protein-protein interaction prediction suggests a role for RPLARs in p53 stability and interaction interfaces of tumor suppressive protein-protein complexes. With experimental validation of the RPLARs’ roles in p53 stability, transactivation, and involvement in senescence-regulatory pathways, we can gain crucial insights into mechanisms underlying dysregulated tumor suppression and accelerated aging.more » « less
-
Abstract Transcription factors carry long intrinsically disordered regions often containing multiple activation domains. Despite numerous recent high‐throughput identifications and characterizations of activation domains, the interplay between sequence motifs, activation domains, and regulator binding in intrinsically disordered transcription factor regions remains unresolved. Here, we map sequence motifs and activation domains in anArabidopsis thalianaNAC transcription factor clade, revealing that although sequence motifs and activation domains often coincide, no systematic overlap exists. Biophysical analyses using NMR spectroscopy show that the long intrinsically disordered region of senescence‐associated transcription factor ANAC046 is devoid of residual structure. We identify two activation domain/sequence motif regions, one at each end that both bind a panel of six positive and negative regulator domains from biologically relevant regulators promiscuously. Binding affinities measured using isothermal titration calorimetry reveal a hierarchy for regulator binding of the two ANAC046 activation domain/sequence motif regions defining these as regulatory hotspots. Despite extensive dynamic intramolecular contacts along the disordered chain revealed using paramagnetic relaxation enhancement experiments and simulations, the regions remain uncoupled in binding. Together, the results imply rheostatic regulation by ANAC046 through concentration‐dependent regulator competition, a mechanism likely mirrored in other transcription factors with distantly located activation domains.more » « less
An official website of the United States government

