skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Matching Polytopes, Gorensteinness, and the Integer Decomposition Property
Abstract The matching polytope of a graphGis the convex hull of the indicator vectors of the matchings onG. We characterize the graphs whose associated matching polytopes are Gorenstein, and then prove that all Gorenstein matching polytopes possess the integer decomposition property. As a special case study, we examine the matching polytopes of wheel graphs and show that they arenotGorenstein, butdopossess the integer decomposition property.  more » « less
Award ID(s):
2102921
PAR ID:
10583111
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Graphs and Combinatorics
Volume:
41
Issue:
3
ISSN:
0911-0119
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A simple polytopePis calledB-rigidif its combinatorial type is determined by the cohomology ring of the moment-angle manifold$$\mathcal {Z}_P$$overP. We show that any tensor product decomposition of this cohomology ring is geometrically realized by a product decomposition of the moment-angle manifold up to equivariant diffeomorphism. As an application, we find thatB-rigid polytopes are closed under products, generalizing some recent results in the toric topology literature. Algebraically, our proof establishes that the Koszul homology of a Gorenstein Stanley–Reisner ring admits a nontrivial tensor product decomposition if and only if the underlying simplicial complex decomposes as a join of full subcomplexes. 
    more » « less
  2. Abstract We present an integer programming model to compute the strong rainbow connection number,src(G), of any simple graphG. We introduce several enhancements to the proposed model, including a fast heuristic, and a variable elimination scheme. Moreover, we present a novel lower bound forsrc(G) which may be of independent research interest. We solve the integer program both directly and using an alternative method based on iterative lower bound improvement, the latter of which we show to be highly effective in practice. To our knowledge, these are the first computational methods for the strong rainbow connection problem. We demonstrate the efficacy of our methods by computing the strong rainbow connection numbers of graphs containing up to 379 vertices. 
    more » « less
  3. Abstract We say that a graphHdominates another graphHif the number of homomorphisms fromHto any graphGis dominated, in an appropriate sense, by the number of homomorphisms fromHtoG. We study the family of dominating graphs, those graphs with the property that they dominate all of their subgraphs. It has long been known that even-length paths are dominating in this sense and a result of Hatami implies that all weakly norming graphs are dominating. In a previous paper, we showed that every finite reflection group gives rise to a family of weakly norming, and hence dominating, graphs. Here we revisit this connection to show that there is a much broader class of dominating graphs. 
    more » « less
  4. Abstract We initiate the study of a class of polytopes, which we coinpolypositroids, defined to be those polytopes that are simultaneously generalized permutohedra (or polymatroids) and alcoved polytopes. Whereas positroids are the matroids arising from the totally nonnegative Grassmannian, polypositroids are “positive” polymatroids. We parametrize polypositroids using Coxeter necklaces and balanced graphs, and describe the cone of polypositroids by extremal rays and facet inequalities. We introduce a notion of$$(W,c)$$-polypositroidfor a finite Weyl groupWand a choice of Coxeter elementc. We connect the theory of$$(W,c)$$-polypositroids to cluster algebras of finite type and to generalized associahedra. We discussmembranes, which are certain triangulated 2-dimensional surfaces inside polypositroids. Membranes extend the notion of plabic graphs from positroids to polypositroids. 
    more » « less
  5. Abstract Given a multigraph$$G=(V,E)$$, the edge-coloring problem (ECP) is to color the edges ofGwith the minimum number of colors so that no two adjacent edges have the same color. This problem can be naturally formulated as an integer program, and its linear programming relaxation is referred to as the fractional edge-coloring problem (FECP). The optimal value of ECP (resp. FECP) is called the chromatic index (resp. fractional chromatic index) ofG, denoted by$$\chi '(G)$$(resp.$$\chi ^*(G)$$). Let$$\Delta (G)$$be the maximum degree ofGand let$$\Gamma (G)$$be the density ofG, defined by$$\begin{aligned} \Gamma (G)=\max \left\{ \frac{2|E(U)|}{|U|-1}:\,\, U \subseteq V, \,\, |U|\ge 3 \hspace{5.69054pt}\textrm{and} \hspace{5.69054pt}\textrm{odd} \right\} , \end{aligned}$$whereE(U) is the set of all edges ofGwith both ends inU. Clearly,$$\max \{\Delta (G), \, \lceil \Gamma (G) \rceil \}$$is a lower bound for$$\chi '(G)$$. As shown by Seymour,$$\chi ^*(G)=\max \{\Delta (G), \, \Gamma (G)\}$$. In the early 1970s Goldberg and Seymour independently conjectured that$$\chi '(G) \le \max \{\Delta (G)+1, \, \lceil \Gamma (G) \rceil \}$$. Over the past five decades this conjecture, a cornerstone in modern edge-coloring, has been a subject of extensive research, and has stimulated an important body of work. In this paper we present a proof of this conjecture. Our result implies that, first, there are only two possible values for$$\chi '(G)$$, so an analogue to Vizing’s theorem on edge-colorings of simple graphs holds for multigraphs; second, although it isNP-hard in general to determine$$\chi '(G)$$, we can approximate it within one of its true value, and find it exactly in polynomial time when$$\Gamma (G)>\Delta (G)$$; third, every multigraphGsatisfies$$\chi '(G)-\chi ^*(G) \le 1$$, and thus FECP has a fascinating integer rounding property. 
    more » « less