skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Product decompositions of moment-angle manifolds and B -rigidity
Abstract A simple polytopePis calledB-rigidif its combinatorial type is determined by the cohomology ring of the moment-angle manifold$$\mathcal {Z}_P$$overP. We show that any tensor product decomposition of this cohomology ring is geometrically realized by a product decomposition of the moment-angle manifold up to equivariant diffeomorphism. As an application, we find thatB-rigid polytopes are closed under products, generalizing some recent results in the toric topology literature. Algebraically, our proof establishes that the Koszul homology of a Gorenstein Stanley–Reisner ring admits a nontrivial tensor product decomposition if and only if the underlying simplicial complex decomposes as a join of full subcomplexes.  more » « less
Award ID(s):
1928930
PAR ID:
10529629
Author(s) / Creator(s):
;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Canadian Mathematical Bulletin
Volume:
66
Issue:
4
ISSN:
0008-4395
Page Range / eLocation ID:
1313 to 1325
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Consider a pair of elementsfandgin a commutative ringQ. Given a matrix factorization offand another ofg, the tensor product of matrix factorizations, which was first introduced by Knörrer and later generalized by Yoshino, produces a matrix factorization of the sum$$f+g$$. We will study the tensor product ofd-fold matrix factorizations, with a particular emphasis on understanding when the construction has a non-trivial direct sum decomposition. As an application of our results, we construct indecomposable maximal Cohen–Macaulay and Ulrich modules over hypersurface domains of a certain form. 
    more » « less
  2. Abstract The well-studied moduli space of complex cubic surfaces has three different, but isomorphic, compact realizations: as a GIT quotient$${\mathcal {M}}^{\operatorname {GIT}}$$, as a Baily–Borel compactification of a ball quotient$${(\mathcal {B}_4/\Gamma )^*}$$, and as a compactifiedK-moduli space. From all three perspectives, there is a unique boundary point corresponding to non-stable surfaces. From the GIT point of view, to deal with this point, it is natural to consider the Kirwan blowup$${\mathcal {M}}^{\operatorname {K}}\rightarrow {\mathcal {M}}^{\operatorname {GIT}}$$, whereas from the ball quotient point of view, it is natural to consider the toroidal compactification$${\overline {\mathcal {B}_4/\Gamma }}\rightarrow {(\mathcal {B}_4/\Gamma )^*}$$. The spaces$${\mathcal {M}}^{\operatorname {K}}$$and$${\overline {\mathcal {B}_4/\Gamma }}$$have the same cohomology, and it is therefore natural to ask whether they are isomorphic. Here, we show that this is in factnotthe case. Indeed, we show the more refined statement that$${\mathcal {M}}^{\operatorname {K}}$$and$${\overline {\mathcal {B}_4/\Gamma }}$$are equivalent in the Grothendieck ring, but notK-equivalent. Along the way, we establish a number of results and techniques for dealing with singularities and canonical classes of Kirwan blowups and toroidal compactifications of ball quotients. 
    more » « less
  3. Abstract We study the family of irreducible modules for quantum affine 𝔰 𝔩 n + 1 {\mathfrak{sl}_{n+1}}whose Drinfeld polynomials are supported on just one node of the Dynkin diagram. We identify all the prime modules in this family and prove a unique factorization theorem. The Drinfeld polynomials of the prime modules encode information coming from the points of reducibility of tensor products of the fundamental modules associated to A m {A_{m}}with m n {m\leq n}. These prime modules are a special class of the snake modules studied by Mukhin and Young. We relate our modules to the work of Hernandez and Leclerc and define generalizations of the category 𝒞 - {\mathscr{C}^{-}}. This leads naturally to the notion of an inflation of the corresponding Grothendieck ring. In the last section we show that the tensor product of a (higher order) Kirillov–Reshetikhin module with its dual always contains an imaginary module in its Jordan–Hölder series and give an explicit formula for its Drinfeld polynomial. Together with the results of [D. Hernandez and B. Leclerc,A cluster algebra approach toq-characters of Kirillov–Reshetikhin modules,J. Eur. Math. Soc. (JEMS) 18 2016, 5, 1113–1159] this gives examples of a product of cluster variables which are not in the span of cluster monomials. We also discuss the connection of our work with the examples arising from the work of [E. Lapid and A. Mínguez,Geometric conditions for \square-irreducibility of certain representations of the general linear group over a non-archimedean local field,Adv. Math. 339 2018, 113–190]. Finally, we use our methods to give a family of imaginary modules in type D 4 {D_{4}}which do not arise from an embedding of A r {A_{r}}with r 3 {r\leq 3}in D 4 {D_{4}}. 
    more » « less
  4. Abstract We investigate a novel geometric Iwasawa theory for$${\mathbf Z}_p$$-extensions of function fields over a perfect fieldkof characteristic$$p>0$$by replacing the usual study ofp-torsion in class groups with the study ofp-torsion class groupschemes. That is, if$$\cdots \to X_2 \to X_1 \to X_0$$is the tower of curves overkassociated with a$${\mathbf Z}_p$$-extension of function fields totally ramified over a finite nonempty set of places, we investigate the growth of thep-torsion group scheme in the Jacobian of$$X_n$$as$$n\rightarrow \infty $$. By Dieudonné theory, this amounts to studying the first de Rham cohomology groups of$$X_n$$equipped with natural actions of Frobenius and of the Cartier operatorV. We formulate and test a number of conjectures which predict striking regularity in the$$k[V]$$-module structure of the space$$M_n:=H^0(X_n, \Omega ^1_{X_n/k})$$of global regular differential forms as$$n\rightarrow \infty .$$For example, for each tower in a basic class of$${\mathbf Z}_p$$-towers, we conjecture that the dimension of the kernel of$$V^r$$on$$M_n$$is given by$$a_r p^{2n} + \lambda _r n + c_r(n)$$for allnsufficiently large, where$$a_r, \lambda _r$$are rational constants and$$c_r : {\mathbf Z}/m_r {\mathbf Z} \to {\mathbf Q}$$is a periodic function, depending onrand the tower. To provide evidence for these conjectures, we collect extensive experimental data based on new and more efficient algorithms for working with differentials on$${\mathbf Z}_p$$-towers of curves, and we prove our conjectures in the case$$p=2$$and$$r=1$$. 
    more » « less
  5. Abstract We study the Eisenstein series associated to the full rank cusps in a complete hyperbolic manifold. We show that given a Kleinian group$$\Gamma <{\operatorname{\mathrm{Isom}}}^+(\mathbb H^{n+1})$$, each full rank cusp corresponds to a cohomology class in$$H^{n}(\Gamma , V)$$, whereVis either the trivial coefficient or the adjoint representation. Moreover, by computing the intertwining operator, we show that different cusps give rise to linearly independent classes. 
    more » « less