skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Adaptive Framework for Manipulator Skill Reproduction in Dynamic Environments
Robot skill learning and execution in uncertain and dynamic environments is a challenging task. This paper proposes an adaptive framework that combines Learning from Demonstration (LfD), environment state prediction, and high-level decision making. Proactive adaptation prevents the need for reactive adaptation, which lags behind changes in the environment rather than anticipating them. We propose a novel LfD representation, Elastic-Laplacian Trajectory Editing (ELTE), which continuously adapts the trajectory shape to predictions of future states. Then, a high-level reactive system using an Unscented Kalman Filter (UKF) and Hidden Markov Model (HMM) prevents unsafe execution in the current state of the dynamic environment based on a discrete set of decisions. We first validate our LfD representation in simulation, then experimentally assess the entire framework using a legged mobile manipulator in 36 real-world scenarios. We show the effectiveness of the proposed framework under different dynamic changes in the environment. Our results show that the proposed framework produces robust and stable adaptive behaviors.  more » « less
Award ID(s):
2237463
PAR ID:
10583153
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-6107-0
Page Range / eLocation ID:
498 to 503
Format(s):
Medium: X
Location:
New York, NY, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. This thesis summary presents research focused on incorporating high-level abstract behavioral requirements, called 'conceptual constraints', into the modeling processes of robot Learning from Demonstration (LfD) techniques. This idea is realized via an LfD algorithm called Concept Constrained Learning from Demonstration. This algorithm encodes motion planning constraints as temporally associated logical formulae of Boolean operators that enforce high-level constraints over portions of the robot's motion plan during learned skill execution. This results in more easily trained, more robust, and safer learned skills. Current work focuses on automating constraint discovery, introducing conceptual constraints into human-aware motion planning algorithms, and expanding upon trajectory alignment techniques for LfD. Future work will focus on how concept constrained algorithms and models are best incorporated into effective interfaces for end-users. 
    more » « less
  2. State estimation and control are often addressed separately, leading to unsafe execution due to sensing noise, execution errors, and discrepancies between the planning model and reality. Simultaneous control and trajectory estimation using probabilistic graphical models has been proposed as a unified solution to these challenges. Previous work, however, relies heavily on appropriate Gaussian priors and is limited to holonomic robots with linear time-varying models. The current research extends graphical optimization methods to vehicles with arbitrary dynamical models via Simultaneous Trajectory Estimation and Local Adaptation (STELA). The overall approach initializes feasible trajectories using a kinodynamic, sampling-based motion planner. Then, it simultaneously: (i) estimates the past trajectory based on noisy observations, and (ii) adapts the controls to be executed to minimize deviations from the planned, feasible trajectory, while avoiding collisions. The proposed factor graph representation of trajectories in STELA can be applied for any dynamical system given access to first or second-order state update equations, and introduces the duration of execution between two states in the trajectory discretization as an optimization variable. These features provide both generalization and flexibility in trajectory following. In addition to targeting computational efficiency, the proposed strategy performs incremental updates of the factor graph using the iSAM algorithm and introduces a time-window mechanism. This mechanism allows the factor graph to be dynamically updated to operate over a limited history and forward horizon of the planned trajectory. This enables online updates of controls at a minimum of 10Hz. Experiments demonstrate that STELA achieves at least comparable performance to previous frameworks on idealized vehicles with linear dynamics. STELA also directly applies to and successfully solves trajectory following problems for more complex dynamical models. Beyond generalization, simulations assess STELA's robustness under varying levels of sensing and execution noise, while ablation studies highlight the importance of different components of STELA. Real-world experiments validate STELA's practical applicability on a low-cost MuSHR robot, which exhibits high noise and non-trivial dynamics. 
    more » « less
  3. null (Ed.)
    Learning from Demonstration (LfD) enables novice users to teach robots new skills. However, many LfD methods do not facilitate skill maintenance and adaptation. Changes in task requirements or in the environment often reveal the lack of resiliency and adaptability in the skill model. To overcome these limitations, we introduce ARC-LfD: an Augmented Reality (AR) interface for constrained Learning from Demonstration that allows users to maintain, update, and adapt learned skills. This is accomplished through insitu visualizations of learned skills and constraint-based editing of existing skills without requiring further demonstration. We describe the existing algorithmic basis for this system as well as our Augmented Reality interface and the novel capabilities it provides. Finally, we provide three case studies that demonstrate how ARC-LfD enables users to adapt to changes in the environment or task which require a skill to be altered after initial teaching has taken place. 
    more » « less
  4. Learning from Demonstration (LfD) is a promising approach to enable Multi-Robot Systems (MRS) to acquire complex skills and behaviors. However, the intricate interactions and coordination challenges in MRS pose significant hurdles for effective LfD. In this paper, we present a novel LfD framework specifically designed for MRS, which leverages visual demonstrations to capture and learn from robot-robot and robot-object interactions. Our framework introduces the concept of Interaction Keypoints (IKs) to transform the visual demonstrations into a representation that facilitates the inference of various skills necessary for the task. The robots then execute the task using sensorimotor actions and reinforcement learning (RL) policies when required. A key feature of our approach is the ability to handle unseen contact-based skills that emerge during the demonstration. In such cases, RL is employed to learn the skill using a classifier-based reward function, eliminating the need for manual reward engineering and ensuring adaptability to environmental changes. We evaluate our framework across a range of mobile robot tasks, covering both behavior-based and contact-based domains. The results demonstrate the effectiveness of our approach in enabling robots to learn complex multi-robot tasks and behaviors from visual demonstrations. 
    more » « less
  5. Learning from Demonstration (LfD) approaches empower end-users to teach robots novel tasks via demonstrations of the desired behaviors, democratizing access to robotics. However, current LfD frameworks are not capable of fast adaptation to heterogeneous human demonstrations nor the large-scale deployment in ubiquitous robotics applications. In this paper, we propose a novel LfD framework, Fast Lifelong Adaptive Inverse Reinforcement learning (FLAIR). Our approach (1) leverages learned strategies to construct policy mixtures for fast adaptation to new demonstrations, allowing for quick end-user personalization, (2) distills common knowledge across demonstrations, achieving accurate task inference; and (3) expands its model only when needed in lifelong deployments, maintaining a concise set of prototypical strategies that can approximate all behaviors via policy mixtures. We empirically validate that FLAIR achieves adaptability (i.e., the robot adapts to heterogeneous, user-specific task preferences), efficiency (i.e., the robot achieves sample-efficient adaptation), and scalability (i.e., the model grows sublinearly with the number of demonstrations while maintaining high performance). FLAIR surpasses benchmarks across three control tasks with an average 57% improvement in policy returns and an average 78% fewer episodes required for demonstration modeling using policy mixtures. Finally, we demonstrate the success of FLAIR in a table tennis task and find users rate FLAIR as having higher task (p < .05) and personalization (p < .05) performance. 
    more » « less