skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 22, 2026

Title: Protect or prevent? A practicable framework for the dilemmas of COVID-19 vaccine prioritization
Determining COVID-19 vaccination strategies presents many challenges in light of limited vaccination capacity and the heterogeneity of affected communities. Who should be prioritized for early vaccination when different groups manifest different levels of risks and contact rates? Answering such questions often becomes computationally intractable given that network size can exceed millions. We obtain a framework to compute the optimal vaccination strategy within seconds to minutes from among all strategies, including highly dynamic ones that adjust vaccine allocation as often as required, and even with modest computation resources. We then determine the optimal strategy for a large range of parameter values representative of various US states, countries, and case studies including retirement homes and prisons. The optimal is almost always one of a few candidate strategies, and, even when not, the suboptimality of the best among these candidates is minimal. Further, we find that many commonly deployed vaccination strategies, such as vaccinating the high risk group first, or administering second doses without delay, can often incur higher death rates, hospitalizations, and symptomatic infection counts. Our framework can be easily adapted to future variants or pandemics through appropriate choice of the compartments of the disease and parameters.  more » « less
Award ID(s):
2047482
PAR ID:
10583284
Author(s) / Creator(s):
; ; ;
Editor(s):
Ekwebelem, Osmond
Publisher / Repository:
Plos One
Date Published:
Journal Name:
PLOS ONE
Volume:
20
Issue:
1
ISSN:
1932-6203
Page Range / eLocation ID:
e0316294
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The COVID-19 pandemic highlighted the need to quickly respond, via public policy, to the onset of an infectious disease breakout. Deciding the type and level of interventions a population must consider to mitigate risk and keep the disease under control could mean saving thousands of lives. Many models were quickly introduced highlighting lockdowns, testing, contact tracing, travel policies, later on vaccination, and other intervention strategies along with costs of implementation. Here, we provided a framework for capturing population heterogeneity whose consideration may be crucial when developing a mitigation strategy based on non-pharmaceutical interventions. Precisely, we used age-stratified data to segment our population into groups with unique interactions that policy can affect such as school children or the oldest of the population, and formulated a corresponding optimal control problem considering the economic cost of lockdowns and deaths. We applied our model and numerical methods to census data for the state of New Jersey and determined the most important factors contributing to the cost and the optimal strategies to contained the pandemic impact. 
    more » « less
  2. Carabali, Mabel (Ed.)
    Monkeypox (MPX) is a viral zoonotic disease that was endemic to Central and West Africa. However, during the first half of 2022, MPX spread to almost 60 countries all over the world. Smallpox vaccines are about 85% effective in preventing MPX infections. Our objective is to determine whether the vaccines should be mandated or whether voluntary use of the vaccine could be enough to stop the MPX outbreak. We incorporate a standard SVEIR compartmental model of MPX transmission into a game-theoretical framework. We study a vaccination game in which individuals decide whether or not to vaccinate by assessing their benefits and costs. We solve the game for Nash equilibria, i.e., the vaccination rates the individuals would likely adopt without any outside intervention. We show that, without vaccination, MPX can become endemic in previously non-endemic regions, including the United States. We also show that to “not vaccinate” is often an optimal solution from the individual’s perspective. Moreover, we demonstrate that, for some parameter values, there are multiple equilibria of the vaccination game, and they exhibit a backward bifurcation. Thus, without centrally mandated minimal vaccination rates, the population could easily revert to no vaccination scenario. 
    more » « less
  3. null (Ed.)
    Pathogen management strategies in wildlife are typically accompanied by an array of uncertainties such as the efficacy of vaccines or potential unintended consequences of interventions. In the context of such uncertainties, models of disease transmission can provide critical insight for optimizing pathogen management, especially for species of conservation concern. The endangered Florida panther experienced an outbreak of feline leukaemia virus (FeLV) in 2002–2004, and continues to be affected by this deadly virus. Ongoing management efforts aim to mitigate the effects of FeLV on panthers, but with limited information about which strategies may be most effective and efficient. We used a simulation-based approach to determine optimal FeLV management strategies in panthers. We simulated the use of proactive FeLV management strategies (i.e. proactive vaccination) and several reactive strategies, including reactive vaccination and test-and-removal. Vaccination strategies accounted for imperfect vaccine-induced immunity, specifically partial immunity in which all vaccinates achieve partial pathogen protection. We compared the effectiveness of these different strategies in mitigating the number of FeLV mortalities and the duration of outbreaks. Results showed that inadequate proactive vaccination can paradoxically increase the number of disease-induced mortalities in FeLV outbreaks. These effects were most likely due to imperfect vaccine immunity causing vaccinates to serve as a semi-susceptible population, thereby allowing outbreaks to persist in circumstances otherwise conducive to fadeout. Combinations of proactive vaccination with reactive test-and-removal or vaccination, however, had a synergistic effect in reducing the impacts of FeLV outbreaks, highlighting the importance of using mixed strategies in pathogen management. Synthesis and applications. Management-informed disease simulations are an important tool for identifying unexpected negative consequences and synergies among pathogen management strategies. In particular, we find that imperfect vaccine-induced immunity necessitates further consideration to avoid unintentionally worsening epidemics in some conditions. However, mixing proactive and reactive interventions can improve pathogen control while mitigating uncertainties associated with imperfect interventions. 
    more » « less
  4. Cussens, James; Zhang, Kun (Ed.)
    Metric elicitation is a recent framework for eliciting classification performance metrics that best reflect implicit user preferences based on the task and context. However, available elicitation strategies have been limited to linear (or quasi-linear) functions of predictive rates, which can be practically restrictive for many applications including fairness. This paper develops a strategy for eliciting more flexible multiclass metrics defined by quadratic functions of rates, designed to reflect human preferences better. We show its application in eliciting quadratic violation-based group-fair metrics. Our strategy requires only relative preference feedback, is robust to noise, and achieves near-optimal query complexity. We further extend this strategy to eliciting polynomial metrics – thus broadening the use cases for metric elicitation. 
    more » « less
  5. Human behavior shapes epidemic trajectories, evolving as individuals reassess risks over time. Our study closes the loop between epidemic status, individual risk assessments, and interactions. We developed an agent-based model where the individuals can alter their decisions based on perceived risks. In our model, agents’ perceived risk is proxied by their full awareness of actual risks, such as the probability of infection or death. We conducted several simulations of COVID-19 spread for a large metropolitan city akin to New York City, covering the period from December 2020 to May 2021. Our model allows residents to decide daily on traveling to crowded city areas or stay in neighborhoods with relatively lower population density. Our base run simulations indicate that when individuals assess their own risk and understand how diseases spread, they adopt behaviors that slow the spread of virus, leading to fewer cumulative cases and deaths but extending the duration of the outbreak. This model was then simulated with various vaccination strategies such as random distribution, prioritizing older individuals, high-contact-rate individuals, or crowded area residents, all within a risk-response behavioral framework. Results show that, in the presence of agents’ behavioral response, there is only a marginal difference across different vaccination strategies. Specifically, vaccination in crowded areas slightly outperformed other vaccination strategies in reducing infections and prioritizing the elderly was slightly more effective in decreasing deaths. The lack of a universally superior vaccination strategy comes from the fact that lowering a risk leads to more risky behavior which partly compensates for vaccination effects. The comparable outcomes of random versus targeted vaccinations highlight the importance of equitable distribution as another key focus in pandemic responses. 
    more » « less