skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Earth Sciences Are the Model Sciences of the Anthropocene
After 4.5 billion years as an evolving and dynamic planet, the Earth continues to evolve but with human‐altered dynamics. Earth scientists have special opportunities and responsibilities to accelerate our understanding of Earth's changes that are transforming our most remarkable home.  more » « less
Award ID(s):
2149482 2308546 2215300
PAR ID:
10583376
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
American Geophysical Union
Date Published:
Journal Name:
Perspectives of Earth and Space Scientists
Volume:
5
Issue:
1
ISSN:
2637-6989
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A goal common to several disciplines within earth and life sciences is to understand how earth processes and abiotic conditions shape the diversification and distribution of species on our planet. To develop a mechanistic and detailed understanding of these relationships across taxonomic-geographic settings should inform a set of boundary conditions that describe the geologic and climatic conditions under which new biodiversity is generated along with the organismal traits (e.g., generation time, dispersal ability) that govern why species vary in their evolutionary responses to the same external influences. However, earth and life sciences each encompass a set of highly complex and sometimes nested relationships. This presents a need for new ways to guide the integration of domain knowledge across these complex systems in a way that can generate new hypotheses, facilitate interdisciplinary collaboration, and shape earth-life theory moving forward. Here, I outline the use of causal structures, which are a set of tools to diagram cause-effect relationships at different levels of detail (specification) that include structural equation meta models (SEMMs), causal diagrams (CDs), and structural equation models (SEMs). I will give examples of how to use SEMMs and CDs to detail earth-life relationships, what we can learn from doing so, and pose a way for how we might quantify these relationships. I hope to demonstrate the usefulness and applicability of thinking about earth-life systems within a causal framework, and speculate about temporal dynamics and the potential for abiotic-to-biotic causal thresholds that may occur over time in different earth-life systems. 
    more » « less
  2. Abstract Artificial intelligence (AI) can be used to improve performance across a wide range of Earth system prediction tasks. As with any application of AI, it is important for AI to be developed in an ethical and responsible manner to minimize bias and other effects. In this work, we extend our previous work demonstrating how AI can go wrong with weather and climate applications by presenting a categorization of bias for AI in the Earth sciences. This categorization can assist AI developers to identify potential biases that can affect their model throughout the AI development life cycle. We highlight examples from a variety of Earth system prediction tasks of each category of bias. 
    more » « less
  3. Collaborative learning has been shown to be beneficial for children's learning performance, increasing the curiosity and intensity of the ability of cooperation. Mixed-Reality with collaborative learning is the trending research topic in the Human-Computer Interaction (HCI) area. Additionally, with the rise of attention to global warming which brings in more extreme weather and climate conditions, the earth science education would be one of the crucial topics for the next generation. Moreover, there are few augmented reality and mixed reality applications on earth science subject. In this paper, we propose a Mixed Reality Tornado Simulator which offers an earth science education in a collaborative setting. Students and the instructor can cooperate on learning the knowledge of the formation and its damage cause on human-built structures, farming, and vegetation by using our mixed reality application with the Microsoft HoloLens. Also, for evaluating the learning performance in this mixed reality setting, we propose to study the cognitive load while the student is learning the abstract knowledge in Earth Science. We will separate the student into a control group and experimental groups and use different teaching instruments to test the difference of cognitive load. 
    more » « less
  4. Abstract Although Artificial Intelligence (AI) projects are common and desired by many institutions and research teams, there are still relatively few success stories of AI in practical use for the Earth science community. Many AI practitioners in Earth science are trapped in the prototyping stage and their results have not yet been adopted by users. Many scientists are still hesitating to use AI in their research routine. This paper aims to capture the landscape of AI-powered geospatial data sciences by discussing the current and upcoming needs of the Earth and environmental community, such as what practical AI should look like, how to realize practical AI based on the current technical and data restrictions, and the expected outcome of AI projects and their long-term benefits and problems. This paper also discusses unavoidable changes in the near future concerning AI, such as the fast evolution of AI foundation models and AI laws, and how the Earth and environmental community should adapt to these changes. This paper provides an important reference to the geospatial data science community to adjust their research road maps, find best practices, boost the FAIRness (Findable, Accessible, Interoperable, and Reusable) aspects of AI research, and reasonably allocate human and computational resources to increase the practicality and efficiency of Earth AI research. 
    more » « less
  5. The heart of the scientific enterprise is a rational effort to understand the causes behind the phenomena we observe. In large-scale complex dynamical systems such as the Earth system, real experiments are rarely feasible. However, a rapidly increasing amount of observational and simulated data opens up the use of novel data-driven causal methods beyond the commonly adopted correlation techniques. Here, we give an overview of causal inference frameworks and identify promising generic application cases common in Earth system sciences and beyond. We discuss challenges and initiate the benchmark platform causeme.net to close the gap between method users and developers. 
    more » « less